Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

biologia

.pdf
Скачиваний:
147
Добавлен:
09.05.2015
Размер:
1.22 Mб
Скачать

II.Болезни с наследственной предрасположенностью (заболевания, которые развиваются в результате совместного действия генетических и средовых факторов. Неблагоприятный генетический фон создает генетическую предрасположенность к развитию заболевания, а неблагоприятное действие факторов внешней среды провоцирует развитие заболевания).

А. Моногенные (непереносимость сульфаниламидов, непереносимость лактозы, непереносимость жирной пищи, непереносимость сыра и шоколада, патологическая реакция на тепло, холод, солнечный свет, вакцины и т.п.)

Б. Полигенные (мультифакториальные): атеросклероз, гипертоническая болезнь, сахарный диабет, язвенная болезнь желудка и двенадцатиперстной кишки, псориаз, шизофрения и многие другие.

ПРИНЦИПЫ ПРОФИЛАКТИКИ, ДИАГНОСТИКИ И ЛЕЧЕНИЯ НАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ

Профилактика и диагностика наследственной патологии

В настоящее время профилактика наследственной патологии проводится на четырех уровнях: 1) прегаметическом; 2) презиготическом; 3) пренатальном; 4) неонатальном.

Прегаметический уровень

Осуществляется:

1.Санитарный контроль за производством – исключение влияния на организм мутагенов. 2.Освобождение женщин детородного возраста от работы на вредном производстве.

3.Создание генетических регистров, т.е. перечней наследственных заболеваний, которые распространены на определенной территории, с указанием частоты встречаемости этих заболеваний. Создание таких регистров позволяет:

а) изучить структуру наследственной патологии; б) определить распространенность заболеваний;

в) своевременно уловить изменение частоты встречаемости наследственных заболеваний и принять необходимые меры.

Презиготический уровень

Важнейшим элементом этого уровня профилактики является медико-генетическое консультирование (МГК) населения.

МГК населения ставит своей целью информировать семью о степени возможного риска рождения ребенка с наследственной патологией и оказать помощь в принятии правильного решения о деторождении.

Различают два вида МГК: проспективное и ретроспективное.

Проспективное МГК проводится относительно прогноза здоровья потомства еще до рождения больного ребенка в семье. Поводом к проведению проспективного МГК может явиться:

-кровно-родственный брак;

-наличие у одного из супругов или его родственников наследственного заболевания;

-воздействие на супругов мутагенных факторов.

Ретроспективное консультирование осуществляется относительно здоровья следующих детей после появления в семье больного ребенка.

Медико-генетическое консультирование включает четыре этапа:

1.Установление диагноза наследственного заболевания. На этом этапе врач использует все доступные и необходимые методы исследования.

2. На втором этапе определяется генетический риск рождения больного ребенка. Риск рождения ребенка с любыми наследственными аномалиями в здоровой супружеской паре составляет в среднем 1- 2%, что определяется случайными генеративными мутациями. Эта величина называется неспецифическим общепопуляционным риском. Обратившихся в консультацию интересует больше специфический риск – это риск рождения ребенка с определенным наследственным заболеванием, уже встречавшимся в семье.

3. На третьем этапе врач в доступной форме сообщает семье сведения о величине риска и оказывает помощь в принятии решения относительно деторождения.

4. На четвертом, заключительном этапе проводится оценка эффективности медико-генетического консультирования в ходе дальнейшего наблюдения за семьей.

Пренатальный уровень

Заключается в проведении пренатальной (дородовой) диагностики.

Пренатальная диагностика – это комплекс мероприятий, который осуществляется с целью определения наследственной патологии у плода и прерывания данной беременности.

Кметодам пренатальной диагностики относятся:

1.Ультразвуковое сканирование (УЗС) – исследование плода с помощью ультразвука.

2.Фетоскопия – метод визуального наблюдения плода в полости матки через эластичный зонд, оснащенный оптической системой.

3.Биопсия хориона. Метод основан на взятии ворсин хориона, культивировании клеток и исследовании их с помощью цитогенетических, биохимических и молекулярно-генетических методов.

4.Амниоцентез – пункция околоплодного пузыря через брюшную стенку и взятие амниотической жидкости. Она содержит клетки плода, которые могут быть исследованы цитогенетически или биохимически в зависимости от предполагаемой патологии плода.

5.Кордоцентез – пункция сосудов пуповины и взятие крови плода. Лимфоциты плода культивируют и подвергают исследованию.

Неонатальный уровень

На четвертом уровне проводится скрининг новорожденных на предмет выявления аутосомнорецессивных болезней обмена в доклинической стадии, когда своевременно начатое лечение дает возможность обеспечить нормальное умственное и физическое развитие детей. Основывается на клиническом, генетическом и лабораторно-инструментальном обследовании пациентов.

Принципы лечения наследственных заболеваний

Различают следующие виды лечения.

1.Симптоматическое (воздействие на симптомы болезни).

2.Патогенетическое (воздействие на механизмы развития заболевания).

Симптоматическое и патогенетическое лечение не устраняет причины заболевания, т.к. не ликвидирует генетический дефект.

Всимптоматическом и патогенетическом лечении могут использоваться следующие приемы.

Исправление пороков развития хирургическими методами (синдактилия, полидактилия, незаращение верхней губы и т.п.).

Заместительная терапия, смысл которой заключается во введении в организм отсутствующих или недостаточных биохимических субстратов.

Индукция метаболизма – введение в организм веществ, которые усиливают синтез некоторых ферментов и, следовательно, ускоряют процессы, в которых эти ферменты участвуют.

Ингибиция метаболизма – введение в организм препаратов, связывающих и выводящих аномальные продукты обмена из организма.

Диетотерапия (лечебное питание) – устранение из пищевого рациона веществ, которые не могут быть усвоены организмом.

3. Этиологическое лечение ставит своей целью исправление наследственного дефекта. Этот вид лечения еще не разработан, сегодня сформулированы лишь исследовательские программы на перспективу. Они основаны на идеях генной инженерии.

Генная инженерия – область молекулярной биологии и генетики, ставящая своей задачей конструирование генетических структур по заранее намеченному плану, т.е. создание организмов с новой генетической программой.

В процессе создания организмов с новой генетической программой можно выделить три основных этапа:

1.Синтез искусственного гена или выделение необходимого гена из клетки донора.

2.Сшивание полученного гена с направляющей (векторной) молекулой ДНК.

3.Введение полученной рекомбинантной молекулы ДНК в клетку-реципиент.

1 этап

Синтез искусственных генов вне организма возможен двумя способами: химическим и ферментативным.

Химический синтез – создание гена с известной нуклеотидной последовательностью. Впервые искусственный ген был синтезирован в 1970 г. индийским ученым Г. Кораной. Это был ген аланиновой т-РНК. Он состоял из 72 нуклеотидов и включал только структурную часть. Регуляторная часть гена отсутствовала, поэтому ген был функционально не активным. В 1976 г. Корана осуществил химический синтез другого гена – гена тирозиновой т-РНК кишечной палочки, который включал промотор и терминатор, т.е. регуляторные части.

Ферментативный синтез искусственных генов – это синтез ДНК на матрице и-РНК в процессе обратной транскрипции. Ферментативный синтез искусственных генов стал возможным после открытия в 1970 г. ферментов обратной транскрипции – обратных транскриптаз. ДНК, полученная в процессе обратной транскрипции, называется ДНК-копией. Полученные путем ферментативного синтеза гены не имеют регуляторных участков, поэтому для обеспечения работы этих генов необходимо присоединять промотор, взятый из генома бактериальной клетки. Таким образом были получены гены, отвечающие за синтез некоторых гормонов: инсулина, соматотропина, глобиновые гены.

2 этап

Состоит в сшивании полученного гена с направляющей, или векторной, молекулой ДНК. В качестве направляющих молекул могут использоваться:

а) бактериальные плазмиды, т.е. кольцевые молекулы ДНК, присутствующие в бактериальной клетке;

б) фаги (фаг лямбда);

в) вирусы (вирус SV 40).

Плазмидную ДНК выделяют и расщепляют ферментом рестриктазой, превращая кольцевую молекулу в линейную. Причем после разрезания одна из цепей оказывается длиннее другой на несколько нуклеотидов, т.е. формируются так называемые «липкие концы». Эти нуклеотиды могут свободно спариваться с комплементарными нуклеотидами другого фрагмента ДНК с липкими концами. Благодаря этому ДНК из различных источников могут объединяться, образуя рекомбинантные молекулы. Рекомбинантную конструкцию вводят затем в бактерию, где она реплицируется.

3 этап

Состоит в проникновении гибридной молекулы ДНК в клетку-реципиент и встраивании в ее геном. Способ введения в клетку гибридных молекул зависит от вектора. Если в качестве вектора используется плазмида, то введение происходит по типу трансформации; если в качестве вектора используется фаг или вирус – по типу трансдукции.

Достижения генной инженерии могут быть использованы по следующим направлениям.

1. Введение генов эукариот в бактерии и создание таких микроорганизмов, которые могут в промышленном масштабе синтезировать биологически активные вещества: антибиотики, витамины, гормоны. Например, были синтезированы гены, отвечающие за синтез инсулина, введены в геном кишечной палочки, которая стала продуцировать инсулин. Сегодня возможно получение таким образом соматостатина, СТГ, брадикинина и других биологически активных веществ.

2. Генотерапия – получение лечебного эффекта с помощью введения в организм чужеродных генов. Клинические испытания по доставке функционально активных молекул ДНК в клетки человека были начаты в 1990 г. и касались таких заболеваний, как гемофилия, серповидно-клеточная анемия, различные ферментопатии. В настоящее время допускается лечение не только моногенных заболеваний, но и мультифакториальных (диабет, атеросклероз, онкологические и психические заболевания).

В зависимости от способа введения экзогенной ДНК в геном пациента генная терапия может проводиться либо в культуре клеток (ex vivo), либо непосредственно в организме (in vivo).

Клеточная генная терапия ex vivo предполагает:

выделение и культивирование специфических типов клеток (например, опухолевых);

введение в них чужеродных генов;

отбор клеток с рекомбинантными молекулами ДНК;

трансплантацию этих клеток тому же пациенту.

Генная терапия in vivo основана на прямом введении клонированных и упакованных последовательностей ДНК в ткани больного.

О Н Т О Г Е Н Е З

ЭМБРИОНАЛЬНЫЙ ПЕРИОД

Онтогенез это полный цикл индивидуального развития каждой особи, начиная с момента образования гамет, давших ей начало, и заканчивая ее смертью.

Онтогенез можно также рассматривать как процесс развертывания наследственной информации, полученной от родителей, который происходит в определенных условиях окружающей среды.

Онтогенез подразделяют на три периода:

1.Предэмбриональный (прогенез).

2.Эмбриональный.

3.Постэмбриональный.

Предэмбриональный период

соответствует гаметогенезу - процессу образования половых клеток.

Эмбриональный период

Эмбриональный период начинается с образования зиготы и заканчивается выходом развивающегося организма из яйцевых или зародышевых оболочек или рождением. По отношению к млекопитающим и человеку этот период называют антенатальным. Развивающийся организм в эмбриональный период питается за счет питательных веществ, накопленных яйцеклеткой, или за счет материнского организма.

Эмбриональный период принято делить на следующие стадии:

1.Зигота.

2.Дробление.

3.Гаструляция.

4.Гисто- и органогенез.

1.Зигота – одноклеточная стадия развития зародыша. Образуется в результате слияния отцовской и материнской гамет. Имеет диплоидный набор хромосом, анимальный и вегетативный полюса, билатеральную симметрию. На этой стадии наблюдается активация обмена веществ с использованием энергии жиров и углеводов. Происходит дифференцировка цитоплазмы на участки, которые определяют развитие бластомеров в нужном направлении при формировании зародышевых листков и зачатков тканей и органов (цитоплазматическая сегрегация).

2.Дробление – ряд последовательных делений зиготы, заканчивающихся образованием многоклеточного однослойного зародыша - бластулы. Клетки, образующиеся в ходе делений, называются бластомеры. В основе деления бластомеров лежит митоз, однако в период интерфазы они не растут, поэтому размеры зародыша на стадии дробления соответствуют размерам зиготы.

Уразличных видов животных дробление происходит по-разному. Характер дробления зависит от количества желтка и его распределения в цитоплазме яйцеклетки.

Классификация яйцеклеток

А. По количеству желтка яйцеклетки подразделяются на:

Алецитальные (млекопитающие, в том числе и человек) – практически лишены желтка.

Олиголецитальные (ланцетник) – содержат небольшое количество желтка.

Мезолецитальные (амфибии и некоторые рыбы) – содержат среднее количество желтка.

Полилецитальные (пресмыкающиеся и птицы) – содержат много желтка.

Б. По распределению желтка различают яйцеклетки:

Изолецитальные (ланцетник, черви) – содержат небольшое количество равномерно распределенного желтка.

Умеренно телолецитальные (амфибии) – содержат среднее количество желтка, который сосредоточен на одном полюсе клетки; на другом полюсе располагается ядро.

Резко телолецитальные (птицы) – содержат много желтка, занимающего почти весь объем цитоплазмы.

Центролецитальные (насекомые) – содержат много желтка, который окружает ядро толстым слоем.

Типы дробления и типы бластул

 

Полное

 

Неполное

 

(голобластическое)

(меробластическое)

равномерн.

неравномерн.

неравномерн.

дискоидальное

поверхностное

синхронное

асинхронное

асинхронное

асинхронное

синхронное

цело-

амфи-

бласто-

диско-

пери-

бластула

бластула

циста

бластула

бластула

(ланцетник)

(лягушка)

(человек)

(птицы)

(насекомые)

Слой клеток, образующих стенку бластулы, называется бластодерма. Внутри бластулы имеется полость – бластоцель. У ланцетника бластула содержит 128 бластомеров.

3.Гаструляция – процесс преобразования однослойного зародыша (бластулы) в многослойный (двухили трехслойный) – гаструлу.

Гаструляция подразделяется на два этапа:

1.Образование двухслойного зародыша.

2.Образование трехслойного зародыша.

1этап. Преобразование однослойного зародыша в двухслойный в

природе может осуществляться четырьмя способами:

- инвагинация – впячивание клеток вегетативного полюса в бластоцель (ланцетник);

-эпиболия – обрастание: клетки одного из полюсов делятся быстрее, поэтому они обрастают бластулу с поверхности (птицы);

-иммиграция – выселение клеток бластодермы в бластоцель и их размножение (кишечнополостные);

-деляминация – расслоение: клетки бластодермы синхронно делятся, образуя два слоя (насекомые).

2 этап – образование трехслойного зародыша. Формирующиеся при гаструляции слои клеток называются зародышевыми листками. Наружный слой клеток – эктодерма, внутренний – энтодерма. Между ними располагается мезодерма. Полость гаструлы называется гастроцель. Вход в полость –

первичный рот (бластопор).

Существует два способа образования мезодермы: телобластический и энтероцельный. Телобластический – в области губ бластопора образуются крупные клетки – телобласты. Они

делятся, и между эктодермой и энтодермой образуется третий зародышевый листок – мезодерма. Такой способ характерен для беспозвоночных.

Энтероцельный – по бокам от первичной кишки образуются выпячивания – карманы. Затем эти выпячивания отделяются от первичной кишки и разрастаются между эктодермой и энтодермой, образуя мезодерму. Такой способ характерен для хордовых.

4. Гисто - и органогенез – формирование из зародышевых листков тканей и органов:

-из эктодермы образуются: эпидермис кожи и его производные, нервная система, рецепторы органов чувств;

-из энтодермы – хорда, эпителий средней кишки, органов дыхания, пищеварительные железы,мочеполовая система.

-из мезодермы – скелет, мышцы, дерма кожи, кровеносная система, выделительная система, надпочечники и половые железы.

Провизорные органы

Жизнедеятельность зародыша в эмбриональный период обеспечивается провизорными органами. У водных животных провизорным органом является желточный мешок, выполняющий

кроветворную и питательную функции.

Уназемных животных:

-желточный мешок (кроветворная и питательная функции);

-амнион с амниотической жидкостью (функция защиты и газообмена);

-аллантоис (первичный мочевой пузырь);

-серозная оболочка (функция защиты и газообмена).

У млекопитающих

провизорными органами являются: пупочный канатик, плацента,

ворсинчатый хорион.

 

Гетерохронность закладки органов и тканей

В эмбриогенезе зачатки различных органов и тканей закладываются неодновременно.

Существует следующая закономерность: раньше закладываются зачатки тех органов, которые раньше начинают функционировать.

Примеры. У хордовых головной конец тела раньше закладывается, чем хвостовой; спинной мозг раньше головного. У человека: верхние конечности закладываются раньше, чем нижние.

Механизмы регуляции эмбриогенеза

Регуляция эмбриогенеза осуществляется на всех уровнях биологической организации организма: надклеточном, клеточном и молекулярно-генетическом.

Надклеточный уровень. Большое значение в управлении ходом эмбриогенеза придается

организационным центрам (организаторам). Впервые их роль была установлена в 1924 году немецким ученым Г. Шпеманом.

Он проводил свои опыты на зародышах тритона. В норме у зародыша тритона из эктодермы на спинной стороне формируется нервная трубка. Однако если на стадии ранней гаструлы удалить верхнюю губу бластопора, то нервная трубка не сформируется. Если верхнюю губу бластопора пересадить под эктодерму брюшной стороны, то нервная трубка сформируется на брюшной стороне. Если добавить зародышу еще одну губу, то сформируется две нервные трубки.

Из проведенных опытов следует, что верхняя губа бластопора направляет развитие эктодермы по пути формирования нервной трубки. Участок верхней губы бластопора Шпеман назвал организационным центром, или индуктором, а само явление получило название – эмбриональная индукция. Ткань, отвечающая на действие индуктора, – компетентная ткань. В последующем были установлены многочисленные примеры взаимовлияния зачатков в ходе эмбриогенеза. Причем деление зачатков на индукторы и компетентную ткань является относительным. Так, при закладке глаза вырост мозгового пузыря вызывает развитие из эктодермы зачатка хрусталика, а зачаток хрусталика - развитие зачатка роговицы.

Исходя из учения Шпемана, ход эмбриогенеза можно представить как цепочку, состоящую из

пар:

 

индуктор

компетентная ткань (индуктор) компетентная ткань и т.д.

Клеточный уровень. В эмбриогенезе наблюдается пять типов клеточных реакций:

1.Пролиферация.

2.Клеточные перемещения.

3.Гибель клеток.

4.Избирательная сортировка.

5.Дифференцировка.

Пролиферация – размножение клеток митозом. Имеет место при формировании любого органа. Клеточные перемещения – миграция отдельных клеток развивающегося организма. Например,

перемещение нервных клеток ганглиозной пластинки к местам закладки рецепторного аппарата органов чувств.

Гибель клеток – запрограммированный процесс на завершающем этапе формообразования органа. Например, гибель клеток в межпальцевых промежутках кисти человека. Если она не произойдет, то ребенок родится со сросшимися пальцами (синдактилия).

Избирательная сортировка – выделение из смеси однотипных клеток и образование между ними прочных контактов.

Дифференцировка клеток – процесс образования специализированных типов клеток. Можно выделить три этапа на пути дифференцировки клеток:

1)тотипотентность (равнонаследственность) – путь развития клетки еще не определен. Это стадия зиготы и начало ее дробления (2-8 бластомеров). У гидромедузы клетки тотипотентны до стадии 32 бластомеров;

2)трансдетерминация – переопределение намеченного пути дифференцировки. Клетка теряет тотипотентность, но способна изменить направление намеченного пути развития (опыты Шпемана);

3)детерминация – клетка имеет строго определенный путь своего развития.

Таким образом, в ходе эмбриогенеза число возможных путей развития каждой клетки уменьшается в конечном счете до одного.

Молекулярно-генетический уровень. Ранние этапы эмбриогенеза (дробление) управляются веществами (РНК, белки), накопленными яйцеклеткой в ходе оогенеза. Они находятся в цитоплазме. Доказательством этого служат опыты английского ученого Д. Гердона, проведенные им в 1962-1972 гг. Он брал яйцеклетку лягушки, удалял из нее ядро и помещал туда ядро специализированной клетки эпителия кишечника. В последующем из такой клетки развивалась нормальная лягушка. Этим опытом было доказано:

1) все специализированные клетки имеют полный набор генов;

2)ранние стадии эмбриогенеза управляются не ядром, а цитоплазмой.

Для объяснения механизмов регуляции эмбриогенеза на молекулярно-генетическом уровне была

предложена гипотеза дифференциальной активности генов: в ходе эмбриогенеза наблюдается последовательная смена активности генов, т.е. гены функционируют поочередно. Включение и выключение генов происходит за счет продуктов деятельности самих генов, т.е. путем саморегуляции.

Экспрессия отдельных генов регулируется на уровне транскрипции негистоновыми белками и гормонами. Различают пептидные гормоны (инсулин) и стероидные (эстрогены и андрогены). Молекулы пептидных гормонов из-за крупных размеров не могут проникнуть в клетку, и поэтому их эффект осуществляется через белки-рецепторы, локализованные в мембранах клеток-мишеней. Стероидные гормоны проникают через мембрану и связываются там с рецепторными белками, образуя комплекс: гормон+белок-рецептор. Затем этот комплекс связывается с негистоновыми белками, которые соединены с промоторными районами специфических генов. При этом промотор освобождается для действия РНК-полимеразы и начинается процесс транскрипции.

Доказательства справедливости гипотезы дифференциальной активности генов:

1)в ходе эмбриогенеза (онтогенеза) наблюдается смена локализации пуффов политенных хромосом у двукрылых насекомых. Пуфф - область интенсивного синтеза иРНК;

2)в онтогенезе человека имеет место смена нескольких видов гемоглобинов:

Стадия

Гемоглобин

 

 

Эмбрион

Gover I

 

Gover II

 

Portland I

 

 

Плод

Гемоглобин F

 

 

Взрослый

Гемоглобин А

 

Гемоглобин А2

Процесс дифференцировки сопровождается уменьшением числа активных генов. Например, у морского ежа из 40 тысяч генов функционируют:

-на стадии бластулы – 30 тысяч;

-на стадии гаструлы – 15-20 тысяч;

-у взрослой особи – 3-5 тысяч генов.

Критические периоды эмбриогенеза

Развитие зародыша происходит под влиянием факторов внешней среды. Один и тот же фактор в различные периоды действует по-разному. Периоды повышенной чувствительности зародыша к повреждающим факторам внешней среды называются критическими периодами.

Воснове критического периода может быть:

активная дифференцировка клеток;

переход от одной стадии к другой;

изменение условий существования.

Вразвитии любого органа существует свой критический период. В эмбриогенезе человека русский ученый П.Г. Светлов выделил три критических периода:

имплантации (6 – 7 сутки после оплодотворения);

плацентации (конец второй недели);

перинатальный (период родов).

Нарушение нормального хода эмбриогенеза ведет к развитию аномалий и уродств. Они встречаются у 1-2% людей.

Виды пороков: аплазия (отсутствие органа), гипоплазия (недоразвитие органа), гипертрофия (увеличение размеров органа), гипотрофия (уменьшение размеров органа), атрезия (отсутствие отверстия), стеноз (сужение протока). Одним из пороков являются сиамские близнецы (сросшиеся в различной степени). Впервые сиамские близнецы (два брата) были описаны в Юго-Восточной Азии. Они прожили 61 год, были женаты, имели 22 детей. В России жили две сросшиеся сестры Маша и Даша.

Причины уродств:

генетические;

экзогенные;

смешанные.

Экзогенные факторы называются тератогенными (от слова teratos - уродство). Тератогенные факторы по своей природе делятся на:

-химические – различные химические вещества, хинин, алкоголь, антибиотик актиномицин Д, хлоридин, талидомид;

-физические – рентгеновские лучи и другие виды ионизирующих излучений;

-биологические – вирусы, простейшие (токсоплазма), токсины гельминтов.

ПОСТЭМБРИОНАЛЬНЫЙ ПЕРИОД. РОСТ И РАЗВИТИЕ

Постэмбриональный период начинается с момента рождения (у млекопитающих) или с выхода из яйцевых или зародышевых оболочек и заканчивается смертью. Организм получает питательные вещества в этот период самостоятельно.

Постэмбриональное развитие подразделяют на четыре периода:

ювенильный (с момента рождения до половой зрелости);

зрелости (репродуктивный);

старости;

смерть (завершающий период онтогенеза).

Ювенильный период морфо-физиологически у различных видов животных протекает неодинаково и зависит от типа онтогенеза. Различают развитие прямое и непрямое (с метаморфозом).

При прямом развитии новорожденное существо сходно со взрослой формой, отличаясь лишь меньшими размерами и недоразвитием отдельных органов и систем. Примеры: млекопитающие, человек.

При непрямом развитии организм претерпевает изменения, превращения – метаморфоз. Метаморфоз бывает неполный и полный.

В случае неполного метаморфоза вышедший из яйцевых оболочек организм (личинка) отличается от взрослой особи, но не резко. В своем развитии каждая особь проходит следующие стадии: яйцо → личинка →имаго. Примеры животных с неполным метаморфозом: вши, клопы, тараканы, саранча, земноводные.

При полном метаморфозе вышедшая из яйца личинка резко отличается от зрелой особи. Каждая особь проходит следующие стадии: яйцо → личинка → куколка → имаго. На стадии куколки происходит два процесса: растворение личиночных органов (гистолиз) и формирование органов имаго (гистогенез). Примеры насекомых с полным метаморфозом: комары, мухи, блохи, бабочки, жуки.

Развитие с метаморфозом является иллюстрацией филогенетического закона Мюллера-Геккеля: онтогенез есть краткое повторение филогенеза. Только у одних видов это повторение происходит в эмбриональный период, а у других захватывает и постэмбриональный. Выбор типа онтогенеза обусловлен особенностями строения яйцеклетки и адаптационными способностями имаго.

Рост и развитие организма

Одной из наиболее характерных черт онтогенеза является увеличение размеров развивающегося организма, т.е. рост. В основе роста лежит увеличение числа клеток, их размеров и накопление межклеточного вещества. Понятие роста тесно связано с развитием организма, вот почему понятия «рост» и «развитие» употребляются вместе.

Классификация типов роста. Существует несколько классификаций типов роста. Прежде всего, выделяют рост:

ограниченный (определенный) – характерен для организмов, растущих до определенного возраста (мухи, птицы, млекопитающие);

неограниченный (неопределенный) – характерен для тех, кто растет всю жизнь (рыбы, рептилии, раки, моллюски).

Наряду с этой классификацией, различают рост:

изометрический – размеры органов увеличиваются с такой же скоростью, как и все тело (рыбы, насекомые);

аллометрический – органы растут с различной скоростью, и поэтому пропорции тела изменяются (человек, млекопитающие).

Типы роста клеток:

ауксентичный – увеличение размеров клеток (коловратки, круглые черви, личинки насекомых);

пролиферативный – увеличение числа клеток:

а) аккреционный – после каждого деления в новый митотический цикл вступает только одна из двух дочерних клеток; б) мультипликативный – многократное деление всех клеток.

Процесс роста характеризуется рядом закономерностей, которые были сформулированы русским ученым И.И. Шмальгаузеном:

интенсивность роста наиболее высока в начале онтогенеза, а затем снижается, и в разные периоды она не одинакова;

в онтогенезе происходит чередование периодов роста и дифференцировки;

дифференцировка ведет к качественным изменениям клеток, обуславливающих уменьшение или полную потерю ими способности к размножению (например, нервные клетки).

Все эти закономерности присущи и человеку. Самый интенсивный рост наблюдается на 1-м

году жизни – 23-25 см; на 2-м – 10-11 см; на 3-м – 8 см. В период с 4 до 7 лет годичный прирост составляет 5-7 см, с 7 до 10 лет – 4-5 см/год. С 11-12 лет у девочек и с 13-14 у мальчиков наблюдается увеличение скорости роста до 7-8 см/год. Это так называемый "пубертатный скачок", соответствующий периоду полового созревания.

Регуляция роста и развития

На процессы роста и развития оказывают влияние внешние и внутренние факторы. Внешние факторы: свет, питание, температура, вода, кислород, электромагнитное излучение, микроэлементы, сезонные явления и т.д. Они не могут изменить тип развития, но сказываются на скорости роста и развития.

Внутренние факторы: генотип, эндокринная и нервная системы (нейро-эндокринная регуляция). Известно, что рост наследуется по типу полимерии.

Нейро-эндокринная регуляция роста и развития

Соседние файлы в предмете Биология