Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
khimia.docx
Скачиваний:
33
Добавлен:
13.05.2015
Размер:
140.04 Кб
Скачать

8. Система – это изучаемое тело или группа тел, которые взаимодействуют между собой и мысленно или реально отделены от окружающей среды границами, проводящими или не проводящими тепло.

В зависимости от характера взаимодействия системы с окружающей средой различают открытые, закрытые и изолированные системы.

Открытые системы могут обмениваться с окружающей средой энергией и веществом. Например, водный раствор хлорида натрия, находящийся в открытом сосуде. При испарении воды из раствора и при теплообмене будут меняться масса системы и ее температура, а, следовательно, и энергия.

Закрытые системы не обмениваются с окружающей средой веществом. Например, раствор хлорида натрия в закрытом сосуде. Если раствор и окружающая среда имеют разную температуру, то будет происходить нагревание или охлаждение раствора, а, следовательно, будет меняться его энергия.

Изолированные системы не могут обмениваться со средой ни веществом, ни энергией. Изолированная система – это идеализация. В природе таких систем нет.

Состояние системы определяется совокупностью свойств и характеризуется термодинамическими параметрами: температурой (), давлением (), объемом (), плотностью (), количеством вещества (), совершаемой работой (), теплотой (). Изменение хотя бы одного термодинамического параметра приводит к изменению состояния системы в целом. Если все параметры постоянны во времени и пространстве, то такое состояние системы называется равновесным.

Функция состояния характеризует внутреннюю энергию системысумму потенциальной энергии взаимодействия всех частиц тела между собой и кинетической энергии их движения. Она зависит от состояния вещества – вида, массы, агрегатного состояния. Абсолютную величину внутренней энергии измерить невозможно. Для изучения химических процессов важно знать только изменение внутренней энергии при переходе системы из одного состояния в другое.

9. I закона термодинамики: если к системе подвести тепло, то подведенное тепло тратится на увеличение внутренней энергии системы и на совершение ей работы.

Функция состояния системы Н – энтальпия – это общий запас энергии системы, т.е. это энергосодержание системы. Энтальпия системы больше внутренней энергии на величину работы.

Тепловой эффект – это количество теплоты, которое выделяется или поглощается при необратимом протекании реакции, когда единственной работой будет работа расширения. При этом температуры исходных веществ и продуктов реакции должны быть одинаковыми.

Тепловой эффект эндотермической реакции (протекает с поглощением тепла) будет положительным: , . Тепловой эффект экзотермической реакции (протекает с выделением тепла) будет отрицательным: , .

10. В химических уравнениях, в которых указана теплота реакции, называются термохимическими. Стандартные условия - Т0= 298 К, р0 = 101,313 кПа, n – 1 моль чистого вещества, изменение энтальпии () относят к единице количества вещества, кДж/моль. Все стандартные термодинамические функции – это табличные величины, которые зависят от агрегатного состояния вещества.

Раздел химии, посвященный изучению тепловых эффектов химических реакций, называется термохимией.

Закон Г.И. Гесса (1840) – тепловой эффект химической реакции зависит от природы и физического состояния исходных веществ и конечных продуктов, но не зависит от характера и пути протекания реакции, т.е. от последовательности отдельных промежуточных стадий.

Из него вытекает ряд следствий:

- в термохимических расчетах теплота образования (энтальпия) простых веществ в стандартных условиях принимается равной нулю.

(простого вещества) = 0

- количество энергии, которое выделяется или поглощается при образовании 1 моль сложного вещества из простых в стандартных условиях, называется стандартной энтальпией образования (, кДж/моль).

- количество энергии, которое выделяется или поглощается 1 моль органического вещества разлагающегося до углекислого газа и воды в стандартных условиях, называется стандартной энтальпией сгорания (, кДж/моль).

- тепловой эффект химической реакции равен разности между суммой теплот образования продуктов реакции и суммой теплот образования исходных веществ с учетом стехиометрических коэффициентов

Закон Гесса позволяет рассчитать тепловые эффекты различных реакций. Но знак и величина теплового эффекта не позволяет судить о способности процессов к самопроизвольному протеканию и не содержит информации о направлении и полноте протекания процессов.

11. Согласно II закону термодинамики самопроизвольные процессы идут в сторону уменьшения запаса внутренней энергии или энтальпии системы. Однако известны такие процессы, которые протекают самопроизвольно без изменения внутренней энергии системы. Движущей силой таких процессов является энтропия системы.

В изохорно-изотермическом процессе вся теплота, подведенная к системе, тратится на изменение внутренней энергии:

В изобарно-изотермическом процессе единственным видом работы, совершаемой системой, является работа расширения:

Химическое равновесие — состояние химической системы, в которой протекает одна или несколько химических реакций, причём скорости в каждой паре прямой-обратной реакции равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем

12. Энтропия (связанная энергия) (S) – это мера необратимости процесса, мера перехода энергии в такую форму, из которой она не может самостоятельно в другую энергию. Энтропия характеризует беспорядок в системе, чем выше беспорядок, тем выше энтропия. Она возрастает с увеличением движения частиц. В изолированных от внешней среды системах процессы протекают самопроизвольно в направлении увеличения энтропии (). Процессы, для которых энтропия уменьшается () неосуществимы в изолированных системах. Если процесс возможен в прямом и обратном направлениях, то в изолированной системе он будет протекать в направлении возрастания энтропии. Протекание самопроизвольного процесса в изолированной системе завершается состоянием равновесия. Следовательно, в состоянии равновесия энтропия системы максимальна.

13. Таким образом, при самопроизвольном движении системы к устойчивому состоянию проявляются две тенденции: уменьшение энтальпии и возрастание энтропии . Суммарный эффект двух тенденций при постоянной температуре и давлении отражает изобарно-изотермический потенциал или энергия Гиббса ().

Функция состояния характеризует общую движущую силу процесса, максимально возможную полезную работу («свободная энергия»), совершаемую системой ; - часть энергии, которая не может быть превращена в полезную работу («связанная энергия»).

Химические реакции протекают в открытом сосуде с изменением объема, поэтому возможность (самопроизвольность) и направление процесса характеризует функция , определяемая по балансовому уравнению при стандартных условиях:

;

Самопроизвольному протеканию процесса отвечает уменьшение энергии Гиббса, . Чем больше уменьшается , тем более необратимо протекает процесс в сторону образования конечных продуктов реакции. Увеличение изобарного потенциала является признаком неосуществимости процесса в данных условиях. Значение характеризует состояние равновесия, т.е. состояние, в котором система не производит полезной работы.

Анализ величин и в уравнении Гиббса показал, что возможность обратимого протекания процесса обусловлена одинаковыми знаками и . При определенной температуре величины и становятся равными. Поэтому из уравнения Гиббса можно определить «равновесную» температуру или температуру начала процесса ():

; = 0; ; (39)

Таким образом, самопроизвольно протекают реакции, в которых изменение свободной энергии отрицательно. Реакции, в которых , протекают лишь при условии, что над системой будет совершена работа внешними силами или системе будет передана энергия извне.

14. Кинетика химических реакций - учение о химических процессах, о законах их протекания во времени, скоростях и механизмах.

Скоростью химической реакции называют изменение количества вещества в единицу времени в единице реакционного пространства. Различают гомогенные и гетерогенные реакции. Если вещества находятся в одной фазе, то такая реакция – гомогенная, если в разных фазах – гетерогенная.

Молекулярность элементарной реакции — число частиц, которые, согласно экспериментально установленному механизму реакции, участвуют в элементарном акте химического взаимодействия.

15. Средней скоростью реакции называют отношение изменения концентрации вещества (уменьшения концентрации исходного вещества или увеличение концентрации продукта реакции) к промежутку времени, в течение которого это изменение произошло

Истинную скорость еще называют мгновенной скоростью реакции, т.е. скорость в данный момент времени.

На скорость химической реакции влияние оказывают ряд факторов:

  • Природа реагирующих веществ

  • Концентрация реагентов.

  • Температура.

  • Катализатор.

  • Давление (для газообразных веществ)

  • Степень изменения (для твердых веществ)

  • Среда

  • Форма реактора.

  • Интенсивность облучения (для фотореакций) и т. д.

16. Чтобы осуществлялось химическое взаимодействие веществ А и В, их молекулы (частицы) должны столкнуться. Чем больше столкновений, тем быстрее протекает реакция. Число же столкновений тем больше, чем выше концентрация реагирующих веществ.

Закон действующих масс (ЗДМ): скорость элементарной реакции пропорциональна произведению концентраций реагирующих веществ в степенях, равных стехиометрическим коэффициентам.

Сумма показателей степеней в кинетических уравнениях называется общим (суммарным) порядком реакции (n).

Таким образом, порядок реакции определяет характер зависимости скорости от концентрации реагентов.

Константа скорости реакции (удельная скорость реакции) — коэффициент пропорциональности в кинетическом уравнении.

Физический смысл константы скорости реакции k следует из уравнения закона действующих масс: k численно равна скорости реакции при концентрации каждого из реагирующих веществ равной 1 моль/л.

Константа скорости реакции зависит от температуры, от природы реагирующих веществ, от катализатора, но не зависит от их концентрации.

Соседние файлы в предмете Химия