Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроника.Методичка / Лабораторная работа N3.doc
Скачиваний:
81
Добавлен:
13.05.2015
Размер:
823.81 Кб
Скачать

Лабораторная работа N3

Применение полупроводниковых диодов

Цель работы:

Исследование некоторых практических применений полупроводниковых диодов для преобразования электрических сигналов

1. Введение

Полупроводниковые диоды, обладающие односторонней проводимостью благодаря вольт – амперной характеристике p –n перехода или перехода Шотки, находят весьма широкое и разнообразное применение в радиотехнических устройствах. Нелинейность прямой ветви вольт – амперной (ВАХ) характеристики используется для преобразования спектра входного сигнала, например для детектирования модулированных сигналов ил выделения суммарной или разностной частоты при подаче на вход двух сигналов разной частоты. Односторонняя проводимость диодов используется для выпрямления переменного тока, т.е. преобразования его в пульсирующий ток одного направления, из которого затем с помощью фильтров получают постоянный по величине и направлению ток.

Явление пробоя и обратная ветвь ВАХ после пробоя p - n перехода используется в диодах специальной конструкции (стабилитронах) для стабилизации напряжения и тока в нагрузке при случайных изменениях этих величин. Наличие барьерной емкости p – n перехода и ее зависимость от величины обратного напряжения используется для электрического управления емкостью различных электрических цепей, например, колебательных контуров, с использованием диодов специальной конструкции – варикапов.

2. Теоретическая часть

    1. Диодный выпрямитель

      Переменный ток промышленной частоты 50 Гц, энергией которого питается абсолютное большинство бытовых и промышленных приборов и машин абсолютно не пригоден для питания радиоэлектронных устройств, для работы которых необходимы источники питания постоянного (по величине и направлению) тока или напряжения. Получение такого тока или напряжения из переменного осуществляется в несколько этапов, одним из которых является выпрямление. В результате этой операции из синусоидального переменного тока получают постоянный по направлению, но изменяющийся по величине – пульсирующий ток (напряжение).

Эту операцию практически повсеместно сейчас выполняют с помощью полупроводниковых диодов, используя их одностороннюю проводимость. Для удобства и наглядности несколько идеализируем вольт – амперную характеристику (ВАХ) диода, считая обратный ток пренебрежительно малым, а прямую ветвь заменим прямой (рис.1).

На рис.1,а реальная ВАХ показана штриховой линией, и добавлена еще одна координатная ось времени, позволяющая изобразить закон изменения входного напряжения диода от времени. На рис.1,б показан закон изменения тока, протекающего через диод, от времени.

Из графиков нетрудно понять, что диод открыт и пропускает ток только пир положительной полуволне входного напряжения, а при отрицательной полуволне на диод действует запирающее обратное напряжение и ток в цепи не проходит, с учетом принятой нами идеализации ВАХ. По этой же причине (линейность прямой ветви ) ток в цепи будет представлять собой последовательность синусоидальных импульсов, длительность которых и интервал между импульсами равны половине периода.

Если в качестве нагрузки включить резистивный элемент (рис.2), то падение напряжения на нем будет повторять по форме ток. С помощью последующих операций фильтрации и стабилизации из такого пульсирующего напряжения или тока получают постоянный не только по направлению, но и по величине ток. Выпрямитель на рис.2 называется однополупериодным, поскольку ток в цепи течет только одну полуволну периода. Есть схемы, использующие два или четыре диода, которые позволяют получить синусоидальные импульсы тока или напряжения в каждом полупериоде с одинаковой полярностью. Такие схемы называются двухполупериодными.

Операция фильтрации пульсирующего напряжения основана на использовании элементов, сопротивление которых зависит от частоты. Дело в том, что последовательность синусоидальных импульсов можно представить рядом Фурье, в который будет входить постоянная составляющая и бесконечный набор гармонических составляющих с частотами, кратными частоте входного напряжения. Амплитуды этих гармонических составляющих уменьшаются с ростом частоты. Поскольку индуктивный элемент обладает сопротивлением прямо пропорциональным частоте, а емкостный элемент - обратно пропорциональным, то выбрав индуктивный элемент с достаточно большой индуктивностью и включив его последовательно с нагрузкой, а конденсатор достаточно большой емкости включив параллельно нагрузке, можно практически полностью избавиться от гармонических составляющих тока или напряжения в нагрузке, сохранив при этом постоянную составляющую.