Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ксе

.docx
Скачиваний:
14
Добавлен:
15.05.2015
Размер:
63.91 Кб
Скачать

1Методы естествознания могут быть подразделены на следующие группы:

Общие методы, касающиеся любого предмета, любой науки. Это различные формы метода, дающего возможность связывать воедино все стороны процесса познания, все его ступени, например, метод восхождения от абстрактного к конкретному, единства логического и исторического. Это, скорее, общефилософские методы познания.

Особенные методы касаются лишь одной стороны изучаемого предмета или же определенного приема исследования: анализ, синтез, индукция, дедукция. К числу особенных методов также относятся наблюдение, измерение, сравнение и эксперимент. В естествознании особенным методам науки придается чрезвычайно важное значение, поэтому в рамках нашего курса необходимо более подробно рассмотреть их сущность.

Наблюдение - это целенаправленный строгий процесс восприятия предметов действительности, которые не должны быть изменены. Исторически метод наблюдения развивается как составная часть трудовой операции, включающей в себя установление соответствия продукта труда его запланированному образцу. Наблюдение как метод познания действительности применяется либо там, где невозможен или очень затруднен эксперимент (в астрономии, вулканологии, гидрологии), либо там, где стоит задача изучить именно естественное функционирование или поведение объекта (в этологии, социальной психологии и т.п.). Наблюдение как метод предполагает наличие программы исследования, формирующейся на базе прошлых убеждений, установленных фактов, принятых концепций. Частными случаями метода наблюдения являются измерение и сравнение.

Эксперимент - метод познания, при помощи которого явления действительности исследуются в контролируемых и управляемых условиях. Он отличается от наблюдения вмешательством в исследуемый объект, то есть активностью по отношению к нему. Проводя эксперимент, исследователь не ограничивается пассивным наблюдением явлений, а сознательно вмешивается в естественный ход их протекания путем непосредственного воздействия на изучаемый процесс или изменения условий, в которых проходит этот процесс. Специфика эксперимента состоит также в том, что в обычных условиях процессы в природе крайне сложны и запутанны, не поддаются полному контролю и управлению. Поэтому возникает задача организации такого исследования, при котором можно было бы проследить ход процесса в «чистом» виде. В этих целях в эксперименте отделяют существенные факторы от несущественных и тем самым значительно упрощают ситуацию. В итоге такое упрощение способствует более глубокому пониманию явлений и создает возможность контролировать немногие существенные для данного процесса факторы и величины. Развитие естествознания выдвигает проблему строгости наблюдения и эксперимента. Дело в том, что они нуждаются в специальных инструментах и приборах, которые последнее время становятся настолько сложными, что сами начинают оказывать влияние на объект наблюдения и эксперимента, чего по условиям быть не должно. Это прежде всего относится к исследованиям в области физики микромира (квантовой механике, квантовой электродинамике и т.д.).

Аналогия - метод познания, при котором происходит перенос знания, полученного в ходе рассмотрения какого-либо одного объекта, на другой, менее изученный и в данный момент изучаемый. Метод аналогии основывается на сходстве предметов по ряду каких-либо признаков, что позволяет получить вполне достоверные знания об изучаемом предмете. Применение метода аналогии в научном познании требует определенной осторожности. Здесь чрезвычайно важно четко выявить условия, при которых он работает наиболее эффективно. Однако в тех случаях, когда можно разработать систему четко сформулированных правил переноса знаний с модели на прототип, результаты и выводы по методу аналогии приобретают доказательную силу.

Моделирование - метод научного познания, основанный на изучении каких- либо объектов посредством их моделей. Появление этого метода вызвано тем, что иногда изучаемый объект или явление оказываются недоступными для прямого вмешательства познающего субъекта или такое вмешательство по ряду причин является нецелесообразным. Моделирование предполагает перенос исследовательской деятельности на другой объект, выступающий в роли заместителя интересующего нас объекта или явления. Объект-заместитель называют моделью, а объект исследования - оригиналом, или прототипом. При этом модель выступает как такой заместитель прототипа, который позволяет получить о последнем определенное знание. Таким образом, сущность моделирования как метода познания заключается в замещении объекта исследования моделью, причем в качестве модели могут быть использованы объекты как естественного, так и искусственного происхождения. Возможность моделирования основана на том, что модель в определенном отношении отображает какие-либо стороны прототипа. При моделировании очень важно наличие соответствующей теории или гипотезы, которые строго указывают пределы и границы допустимых упрощений.

Современной науке известно несколько типов моделирования:

1) предметное моделирование, при котором исследование ведется на модели, воспроизводящей определенные геометрические, физические, динамические или функциональные характеристики объекта-оригинала;

2) знаковое моделирование, при котором в качестве моделей выступают схемы, чертежи, формулы. Важнейшим видом такого моделирования является математическое моделирование, производимое средствами математики и логики;

3) мысленное моделирование, при котором вместо знаковых моделей используются мысленно-наглядные представления этих знаков и операций с ними. В последнее время широкое распространение получил модельный эксперимент с использованием компьютеров, которые являются одновременно и средством, и объектом экспериментального исследования, заменяющими оригинал. В таком случае в качестве модели выступает алгоритм (программа) функционирования объекта.

Анализ - метод научного познания, в основу которого положена процедура мысленного или реального расчленения предмета на составляющие его части. Расчленение имеет целью переход от изучения целого к изучению его частей и осуществляется путем абстрагирования от связи частей друг с другом. Анализ - органичная составная часть всякого научного исследования, являющаяся обычно его первой стадией, когда исследователь переходит от нерасчлененного описания изучаемого объекта к выявлению его строения, состава, а также его свойств и признаков.

Синтез - это метод научного познания, в основу которого положена процедура соединения различных элементов предмета в единое целое, систему, без чего невозможно действительно научное познание этого предмета. Синтез выступает не как метод конструирования целого, а как метод представления целого в форме единства знаний, полученных с помощью анализа. В синтезе происходит не просто объединение, а обобщение аналитически выделенных и изученных особенностей объекта. Положения, получаемые в результате синтеза, включаются в теорию объекта, которая, обогащаясь и уточняясь, определяет пути нового научного поиска.

Индукция - метод научного познания, представляющий собой формулирование логического умозаключения путем обобщения данных наблюдения и эксперимента. Непосредственной основой индуктивного умозаключения является повторяемость признаков в ряду предметов определенного класса. Заключение по индукции представляет собой вывод об общих свойствах всех предметов, относящихся к данному классу, на основании наблюдения достаточно широкого множества единичных фактов. Обычно индуктивные обобщения рассматриваются как опытные истины, или эмпирические законы. Различают полную и неполную индукцию. Полная индукция строит общий вывод на основании изучения всех предметов или явлений данного класса. В результате полной индукции полученное умозаключение имеет характер достоверного вывода. Суть неполной индукции состоит в том, что она строит общий вывод на основании наблюдения ограниченного числа фактов, если среди последних не встретились такие, которые противоречат индуктивному умозаключению. Поэтому естественно, что добытая таким путем истина неполна, здесь мы получаем вероятностное знание, требующее дополнительного подтверждения.

Дедукция - метод научного познания, который заключается в переходе от некоторых общих посылок к частным результатам-следствиям. Умозаключение по дедукции строится по следующей схеме; все предметы класса «А» обладают свойством «В»; предмет «а» относится к классу «А»; значит «а» обладает свойством «В». В целом дедукция как метод познания исходит из уже познанных законов и принципов. Поэтому метод дедукции не позволяет получить содержательно нового знания. Дедукция представляет собой лишь способ логического развертывания системы положений на базе исходного знания, способ выявления конкретного содержания общепринятых посылок. Решение любой научной проблемы включает выдвижение различных догадок, предположений, а чаще всего более или менее обоснованных гипотез, с помощью которых исследователь пытается объяснить факты, не укладывающиеся в старые теории. Гипотезы возникают в неопределенных ситуациях, объяснение которых становится актуальным для науки. Кроме того, на уровне эмпирических знаний (а также на уровне их объяснения) нередко имеются противоречивые суждения. Для разрешения этих проблем требуется выдвижение гипотез. Гипотеза представляет собой всякое предположение, догадку или предсказание, выдвигаемое для устранения ситуации неопределенности в научном исследовании. Поэтому гипотеза есть не достоверное знание, а вероятное, истинность или ложность которого еще не установлены. Любая гипотеза должна быть обязательно обоснована либо достигнутым знанием данной науки, либо новыми фактами (неопределенное знание для обоснования гипотезы не используется). Она должна обладать свойством объяснения всех фактов, которые относятся к данной области знания, систематизации их, а также фактов за пределами данной области, предсказывать появление новых фактов (например, квантовая гипотеза М. Планка, выдвинутая в начале XX в., привела к созданию квантовой механики, квантовой электродинамики и др. теорий). При этом гипотеза не должна противоречить уже имеющимся фактам. Гипотеза должна быть либо подтверждена, либо опровергнута. Для этого она должна обладать свойствами фальсифицируемости и верифицируемости. Фальсификация- процедура, устанавливающая ложность гипотезы в результате экспериментальной или теоретической проверки. Требование фальсифицируемости гипотез означает, что предметом науки может быть только принципиально опровергаемое знание. Неопровержимое знание (например, истины религии) к науке отношения не имеет. При этом сами по себе результаты эксперимента опровергнуть гипотезу не могут. Для этого нужна альтернативная гипотеза или теория, обеспечивающая дальнейшее развитие знаний. В противном случае отказа от первой гипотезы не происходит. Верификация - процесс установления истинности гипотезы или теории в результате их эмпирической проверки. Возможна также косвенная верифицируемость, основанная на логических выводах из прямо верифицированных фактов.

Частные методы - это специальные методы, действующие либо только в пределах отдельной отрасли науки, либо за пределами той отрасли, где они возникли. Таков метод кольцевания птиц, применяемый в зоологии. А методы физики, использованные в других отраслях естествознания, привели к созданию астрофизики, геофизики, кристаллофизики и др. Нередко применяется комплекс взаимосвязанных частных методов к изучению одного предмета. Например, молекулярная биология одновременно пользуется методами физики, математики, химии, кибернетики.

2 Галилео Галилей (1564–1642) происходил из знатного, но бедного флорентийского рода. Закончил медицинский факультет Пизанского университета, впоследствии преподавал математику там же, а еще позднее — в Падуанском университете. Изучает античную математику, античную философию, пишет ряд произведений, среди которых выделяется основное: «Диалог о двух главнейших системах мира — птолемеевой и коперниковой» (1632).

В 1633 г. состоялся суд над Галилеем, на котором произошло его отречение от астрономических воззрений, после чего Галилей продолжал заниматься своей научной деятельностью.

В качестве философа Галилей, как и многие философы Средневековья, исповедует теорию двух истин. По Галилею, есть две истины: истина, изложенная в Св. Писании, и истина, изложенная в книге природы. Они не противоречат друг другу, поскольку Св. Писание является книгой Божественного откровения, а книга природы — книгой Божественного творения. Но познавать эти две книги мы можем разными способами. Оба они самостоятельны: познавая Св. Писание путем откровения, путем веры, или познавая книгу природы путем разума, мы приходим в конце концов к одним и тем же положениям. Св. Писание, по мысли Галилея, безошибочно, ошибаются его толкования. Здесь Галилей занимает антисхоластическую позицию. Библию не следует понимать буквально; главное в понимании Библии — аллегорическое ее исследование. Но когда человек изучает природу, он должен изучать именно природу, а не смотреть на Библию, иначе происходит подмена методов и пользы от такого исследования не будет.

Из других философских положений, кроме теории «двух книг», следует выделить учение о первичных и вторичных качествах (учение, впервые изложенное античными атомистами Левкиппом и Демокритом): материальные тела содержат в себе объективно первичные качества (протяженность, размеры, вес и плотность) и вторичные, которые самим вещам не присущи, а являются лишь отражением этих качеств в человеческом уме.

Но главная заслуга Галилея в том, что именно он стал основоположником современного научного естествознания. В чем состоит та революция, которую он совершил?

Обычно смысл ее сводится к нескольким положениям. В частности, утверждается, что новая физика, новая наука отошла от умозрительных принципов средневековой науки и стала больше опираться на эксперимент и опыт. Это положение верно и одновременно ошибочно. Иногда говорят, что наука стала деятельной, перешла от созерцания к деятельности. В этом несколько больше истины, но не намного. Утверждают также иногда, что наука Нового времени стала отдавать приоритет физическим способам исследования перед другими. Это также не совсем верное наблюдение, поскольку основное отличие науки Нового времени от науки средневековой и античной состоит в другом.

Современная наука возникла именно в 17 веке трудами Галилея и многих его последователей. Это факт, не подлежащий сомнению, и особый феномен человеческого знания: науки в современном смысле не было ни в Средневековье, ни в античности. Переворот, который совершил Галилей, конечно, был сделан не в одиночку. Во многом его положения существовали уже в работах Пико делла Мирандолы и Николая Кузанского.

Одно из главных положений современной науки состоит в утчверждении однородности пространства, однородности всего мира. Античная и средневековая культура всегда рассматривали мир иерархически. Предметы мира отличаются не только количественно, но и качественно. Скажем, по Аристотелю и томистской физике, есть сфера эфира, сфера звезд, где возможно совершенное движение (на земле движение несовершенно). Галилей и до него Джордано Бруно полностью отвергают такую точку зрения, утверждая, что все части мира подчиняются одним и тем же законам. Одно из следствий этого античного и средневекового принципа было представление о естественных и неестественных местах. Как объяснял Аристотель и вслед за ним средневековые физики падение тела? Тело движется вниз, поскольку низ является естественным местом тела. Почему огонь поднимается вверх? Потому что верх является естественным местом огня, там же находится эфир (огнеподобная сущность, квинтэссенция, пятая субстанция).

Естественного места не существует. Галилей полностью отвергает какое-либо качественное рассмотрение мира. В мире существуют только количественные принципы. И еще один принцип, показывающий, что Галилей полностью отрицает средневековое мировоззрение, и античное в том числе. Галилей произносит фразу, впоследствии ставшую афористичной: «Книга природы написана языком математики».

Вся средневековая физика вслед за Аристотелем утверждала, что математическое познание не имеет никакого отношения к природе. Мы помним аристотелевскую классификацию наук: кроме философии есть еще физика и математика; физика изучает подвижные сущности, существующие самостоятельно, а математика изучает неподвижные сущности, существующие несамостоятельно. Поэтому математика и физика разделены по своим предметам. Как может неподвижное число относиться к подвижным предметам? Математика к природе не имеет никакого отношения.

Галилей исходит из другой концепции — пифагорейско-платоновской. Ведь он родился во Флоренции, а традиции флорентийско-платоновской академии оставались в этом городе на долгие годы, и Галилей изучал труды и Платона, и флорентийских платоников. Эти идеи (в частности Пико делла Мирандолы) Галилей сформулировал таким образом, что человек познает мир посредством числа.

Вспомним платоновский диалог «Тимей», в котором говорится, что мир состоит из куба, октаэдра, додекаэдра и других првильных геометрических фигур. Казалось бы, странное положение. Однако если вспомнить, что античная математика не знала другой математики, кроме арифметики и геометрии, то как еще Платон мог выразить ту мысль, что в основе мира лежит число? Не какие-то демокритовские атомы, а именно число, которое человек может познавать, а познавая его, человек познает природу. Поэтому Галилей формулирует принцип, согласно которому книга природы написана языком математики. Именно от Галилея и берет свое начало современное математическое естествознание. До Галилея само понятие формулы, тем более формулы, описывающей движение, было просто бессмыслицей. Если число и может что-то выразить, то лишь некую статику, сосчитать неподвижные предметы, но описать движение — это противоречило определению, согласно аристотелевской физике.

Сама по себе аристотелевская физика, конечно, была замечательной вещью. Она исходила из опоры на чувственное познание. Аристотель отошел от Платона в том, что его не устраивала теория идей и он стремился вернуться к миру реальному. Вся средневековая физика вслед за Аристотелем была также физикой, ориентированной на чувственное познание.

Что мы видим в реальном мире? Мы видим, что предмет может быть приведен в движение лишь тогда, когда на него действует какая-то сила. Это и было одним из основных принципов аристотелевской и средневековой физики. Галилей формулирует принцип противоположный, известный как принцип инертности: любо тело, приведенное в движение, будет находиться в состоянии движении или покоя до тех пор, пока какая-нибудь сила не выведет его из этого состояния. То есть наоборот: толкни тело — и оно будет вечно двигаться.

Какое из этих положений основано на здравом смысле, а какое является идеалистическим вымыслом? Мы никогда не видим, чтобы тело двигалось бесконечно по прямой линии. Поэтому Галилей отходит от принципа чувственного познания и восходит к принципу познания идей. Если Галилей своим умом приходит к выводу, что движение должно быть бесконечно, значит, так оно и должно быть. Галилей в данном случае является последователем парменидовско-зеноновской традиции: если разум противоречит чувствам, то нужно отдавать приоритет разуму. И к какому бы странному выводу мы ни придем в результате анализа движения, предпочтение мы все равно должны отдавать разуму.

Утверждая, что любое тело движется только тогда, когда к нему приложена сила, аристотелевская физика сталкивалась с одной трудностью — трудностью объяснения летящего тела, брошенного камня. Почему летит брошенный камень, ведь на него не действует никакая сила? Аристотель утверждал, что камень летит, потому что на него действует воздух, который его толкает. Если бы камень был брошен в безвоздушном пространстве, движения не было бы. Но природа не терпит пустоты (другой аристотелевский принцип), потому движение и возможно. Частицы воздуха толкают камень.

Галилей выдвигает принцип, что камень летит по инерции. Откуда он взял этот парадоксальный принцип? Мы помним его эксперименты со знаменитой Пизанской башней: бросая предметы, Галилей замерял скорость их движения, ускорение и т.д. Однако камень летит слишком быстро, чтобы замерить время его падения, поэтому Галилей начал делать эксперименты на наклонной плоскости. Если шар движется по наклонной плоскости вниз, то всегда можно вычленить некоторую его вертикальную и горизонтальную составляющие и посчитать, за какое время он пройдет эту вертикальную прямую. Соответственно, если тело будет двигаться вверх, оно так же будет двигаться по вертикальной и горизонтальной составляющим с замедленной скоростью. Если вниз тело движется ускоряясь, а вверх — замедляясь, то пустив его по плоскости, мы приходим к выводу, что оно будет двигаться без ускорения, т.е. с одной и той же скоростью. Природа этому противоречит — Галилей настаивает, что это так. Поэтому Галилей формулирует принцип инерции наперекор чувственным данным. Как скажет впоследствии Гегель: «Если факты противоречат моей теории, то тем хуже для фактов».

Итак, современная наука берет свое начало из претворения платоновских принципов. Но почему Платон не создал науку? Если мы почитаем работы по квантовой механике известного физика Вернера Гейзенберга, мы увидим, что он считает основоположником квантовой механики именно Платона, а отнюдь не Демокрита, потому что Платон ввел число как принцип познания мира.

Платону не хватало одного для создания науки, а именно положения о Боге — Творце мира. Когда на протяжении многих веков христианство поселяет в людях убежденность в том, что миром посредством Бога Слова правит Бог, а человек есть образ Бога, который может познать Бога в Его проявлениях, то эта убежденность и является основой, на которой зарождается современная наука. Достаточно было только возрождения платонизма, чтобы идеи числа, лежащего в основе мироздания, и управляющей, законосозидающей силы привели Галилея к созданию математической науки, ориентированной на познание законов. Ибо что такое наука, как не уверенность в том, что миром правит некий закон? Античное миросозерцание знало лишь хаос. В мире нет никакого закона, есть хаотичное собрание материи. Если некоторые философы и утверждали, что миром правит некая судьба, фортуна, фатум, то эта судьба чужда человеческому разуму. Человек может лишь подчиниться ей. В христианстве же не так: во-первых, миром правит Бог, а во-вторых, Он правит миром через разум, а человеческий разум имеет ту же самую природу и потому может познавать эти законы. К тому же если законы выразить на языке математики, то их можно сформулировать в виде формул. Поэтому современная наука является одним из небольших частных следствий христианства.

В поддержку этого положения вспомним, где зародилась наука. Могла ли она зародиться в Индии, в Китае, мусульманских странах, в Америке? Наука зарождается именно в Европе. И не случайно именно такое соединение во времени и пространстве, как Флоренция. Конечно, идеи витали в возхдухе — это были идеи Джордано Бруно, Николая Кузанского, но лишь гений Галилео Галилея позволил соединить в себе принципы равномерности пространства всего мира, управления миром Бога через творимые Им законы и математики, посредством которой написана книга природы.

Фрэнсис Бэкон

На прошлой лекции мы говорили об учении Галилео Галилея. Именно этот мыслитель, физик, философ, математик, астроном проложил пути к созданию современного естествознания. Однако волею историков философии и науки, да и волею истории обычно в родоначальником современного научного мышления считается Фрэнсис Бэкон (1561–1626).

Бэкон имел знатное происхождение — родился в семье лорда-хранителя печати (на современном языке — министра юстиции), учился в Кембридже на юриста, какое-то время работал адвокатом, был членом английского парламента и сам был лордом-хранителем печати и лордом-канцлером английского парламента. Однако карьера Бэкона не была успешной. Его обвинили во взяточничестве, дело дошло до короля, и Бэкона посадили в тюрьму. Правда, вскоре он был освобожден, но к политике он утрачивает интерес и решает заняться философией, точнее естествознанием (собственно философию Бэкон не любил, понимая под этим определением философию схоластическую и противопоставляя ей свободное исследование природы). Как повествуют биографы, Бэкон настолько активно занимался исследованием природы, что от этого и погиб: проводя опыты по замораживанию, он простудился и умер.

Среди произведений Бэкона выделяется одно большое — «О достоинстве и приумножении наук», которое, правда, не является главным в его творчестве, хотя сам он и считал иначе, посвятив ему большую часть своей жизни. Главное его произведение называется «Новый органон» (понятно, что само заглавие предполагает противопоставление того метода, который создает Бэкон, старому, аристотелевскому, который, как мы помним, излагался в логических работах Аристотеля, совокупно называемых «Органоном»). У Френсиса Бэкона есть и другие работы, в частности несколько эссе, в которых он писал о мудрости древних; каждое из этих эссе посвящено некоему богу или герою: «Орфей, или Философия», «Пан, или Природа», «Нарцисс, или Себялюбие. В то время становились популярными разного рода описания идеальных государственных устройств (уже вышел «Город солнца» Ф.Кампанеллы, «Утопия» Т.Мора), и Бэкон пишет свою утопию — «Новая Атлантида», где писывает мифическое, выдуманное государство, в котором люди посвятили все свои силы изучению природы и на основе сделанных ими открытий могут жить комфортно, не напрягая себя тяжелым физическим трудом.

Таким образом, основная направленность мыслей Бэкона состояла в развитии естествознания и вообще наук. К этому времени наука развивается достаточно бурно: известен порох, изобретено книгопечатание, создан компас. Эти открытия Бэкон считал главными и призывал всех к тому, чтобы не останавливаться на достигнутом и стремиться к новым изобретениям.

Однако в отличие от Галилео Галилея, который создавал теоретическое, математическое естествознание, Бэкон развивает экспериментальное естествознание, указывая на то, что именно эксперимент, опыт должны быть идеалом науки. Любая наука, которая будет строиться на каких-то измышлениях, гипотезах, пустых построениях разума, обречена на неудачу. Наука может быть истинной только тогда, когда опирается на опыт, именно опыт есть, по Бэкону, и источник знания, и критерий истины, и единственное содержание науки. Такая концепция называется эмпиризмом.

В работе «О достоинстве и приумножении наук» Бэкон указывает, что человечество накопило слишком много лишних знаний. Особенно преуспело в этом Средневековье. Схоластика приложила много усилий к тому, чтобы обогатить человечество совершенно не нужными ему знаниями. В этом плане Бэкон делит всю историю человечества на три этапа: молодость, зрелость и старость. Молодостью являлась античность, а старостью — время Бэкона, время подведения итогов и создания серьезных научных систем.

Античность он рассматривает в двух планах: досократовская и сократовская философия. Досократовская философия была честным исследованием фактов, когда не было никаких школ, основанных на непроверенных гипотезах. Философы, собственно говоря, были не философами, а честными исследователями природы. Этот период, по Бэкону, продолжался около 200 лет. Затем усилиями Сократа (а главным образом Платона и Аристотеля) философия начинает заниматься не тем, чем нужно, а именно создавать системы. Платон и Аристотель нанесли наибольший вред науке, ибо говорили не о фактах, не об опытах, а о системах и школах. В этом смысле особенно «достается» Платону. На прошлой лекции я говорил, что именно благодаря возрождению идеяй Платона Галилей пришел к созданию математического естествознания. Бэкон, также стремясь к созданию науки, наоборот, считает Платона наибольшим врагом этой науки.