Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электротехника - вопросы 1-10.doc
Скачиваний:
154
Добавлен:
16.05.2015
Размер:
773.63 Кб
Скачать

1. Линейные электрические цепи постоянного тока. 1, 2 законы Кирхгофа.

Последовательность расчета линейных электрических цепей с помощью законов Кирхгофа:

  • произвольно задаются положительные направления токов в ветвях;

  • обозначают направления обхода контуров;

  • записывают уравнения по первому и второму законам Кирхгофа;

  • решают уравнения;

  • проверяют правильность расчета, составляя энергетический баланс.

Первый закон Кирхгофа:

Формулировка: Алгебраическая сумма токов ветвей, сходящихся в узле равна нулю, при этом токи, направленные от узла, следует брать со знаком плюс, а токи, направленные к узлу, - со знаком минус.

Второй закон Кирхгофа:

Формулировка: Алгебраическая сумма напряжений на резистивных элементах замкнутого контура равна алгебраической сумме э.д.с., входящих в контур. Слагаемые берут со знаком плюс в случае, когда направление обхода контура совпадает с направлением соответсвенно напряжения, тока или э.д.с., в противном случае слагаемые берут с отрицательным знаком.

Если в цепи имеется x ветвей и у узлов, в том числе xi –ветвей с источниками токов, то необходимо составить xxi уравнений для определения токов во всех ветвях. При этом по первому закону Кирхгофа составляют у–1 уравнений, а все остальные xxi–(у–1) уравнения – по второму закону Кирхгофа.

Для проверки правильности расчетов определяют сумму мощностей, генерируемых источниками, и сравнивают ее с суммой мощностей всех потребителей

.

Слагаемые I2R всегда положительны, а слагаемые EI берут со знаком минус, когда направления E и I встречные. Если баланс не получается, то токи определены неправильно.

2. Методы расчёта электрических цепей постоянного тока.

Метод контурных токов:

Ток в любой ветви электрической схемы можно представить в виде суммы нескольких токов, каждый их которых замыкается по своему контуру, оставаясь вдоль него неизменным. Такие составляющие действительных токов называют контурными токами. На рис. действительный ток I2 можно представить как разность контурных токов I11 и I22, т.е.

I2=I11I22 .

При этом уравнение по второму закону Кирхгофа, составленное для 1-го контура, имеет вид I1R1+I2R2=E1E2, или с учетом предыдущего уравненияI11R1+(I11I22)R2=E1E2.

Аналогично для другого контура

I2R2+I3R3=E3E2 или (I11I22)R2I22R3=E3E2.

Преобразуем уравнения

или иначе I11R11I22R12=E11

I11R21+I22R22=E22,

где R11 – сумма сопротивлений всех ветвей, входящих в первый контур; R12 – сопротивление ветви, общей для первого и второго контура; E11 – сумма всех ЭДС, входящих в первый контур.

Соответствующие ЭДС берутся со знаком «минус», если они направлены против направления обхода контура. Аналогичные величины получаются для второго контура.

Метод наложения (суперпозиции):

Для линейных цепей ток в k-ветви равен сумме токов, вызываемых каждой из ЭДС схемы в отдельности. Это позволяет проводить расчеты электрических цепей методом наложения – сначала определить все токи от одной ЭДС, затем от другой и т.д., а потом все составляющие токов от разных ЭДС сложить. Отметим, что мощности от частичных токов суммировать нельзя – в баланс мощностей должны входить полные токи.

Принцип взаимности:

Для линейной цепи ток в k-ветви Ik, вызванный источником Em, находящимся в m-ветви, равен току Im в m-ветви, вызванным источником Em, если источник Em перенести в k-ветвь , т.е. Ik=Emgkm=Emgmk.

Принцип компенсации:

В любой электрической цепи без изменений токораспределения можно заменить сопротивление источником ЭДС, величина которого равна падению напряжения на сопротивлении и направлена встречно току на этом сопротивлении. Аналогичную замену можно сделать и источником тока J, величина которого равна току в этом сопротивлении и направлена на ту же сторону. Это следует из второго и соответственно первого законов Кирхгофа при переносе слагаемого из левой части уравнения в правую.

3. Нелинейные электрические цепи постоянного тока и методы их расчета.

В электрические цепи могут входить элементы, сопротивление которых не является величиной постоянной, а зависит от напряжения и силы тока. Вольт-амперная характеристика (ВАХ) такого элемента имеет нелинейный вид, поэтому элемент называется нелинейным (НЭ). Электрическая цепь, в которую входит хотя бы один нелинейный элемент, называется нелинейной. К нелинейным элементам относятся полупроводниковые приборы, лампы накаливания и др. На рис.1 приведена ВАХ одного из НЭ.

Каждой точке ВАХ НЭ соответствует определенное сопротивление , которое пропорционально тангенсу угла наклона прямой CN к оси токов. Это сопротивление называетсястатическим и представляет собой сопротивление элемента постоянному току. Кроме статического сопротивления НЭ для каждой точки характеристики можно определить так называемое дифференциальное сопротивление Rдиф, которое равно отношению приращения напряжения U к приращению тока I, стремящегося к нулю:

,

т.е. пропорционально тангенсу угла наклона касательной в данной точке характеристики к оси токов. Дифференциальное сопротивление характеризует НЭ при малых изменениях напряжения и тока. При расчете нелинейной цепи с последовательным соединением линейного и нелинейного элемента часто используют метод нагрузочной характеристики.

Для цепи, показанной на рис. 2, согласно второму закону Кирхгофа можно записать:

,

откуда . (1)

При постоянных значениях E и R из (1) следует, что между током I и напряжением на нелинейном элементе UНЭ существует линейная зависимость I=f(UНЭ), которая называется нагрузочной характеристикой. Нагрузочная характеристика проходит через две точки (рис. 3): E = UНЭ, при I = 0 (обрыв в цепи), и , приUНЭ = 0 (короткое замыкание на нелинейном элементе).