Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электротехника - вопросы 31-44.doc
Скачиваний:
172
Добавлен:
16.05.2015
Размер:
788.48 Кб
Скачать

31. Усилительный каскад с ок на биполярном транзисторе. Сравнение каскадов с оэ и ок.

В каскаде с ОК (рисунок) входное напряжение приложено к базе и коллектоpy, а выходное снимается с эмиттера и коллектора. Этот и аналогичный ему каскад с общим стоком являются неинвертирующими. Его так же как и каскад с ОБ можно представить в виде усилительного каскада с ОЭ, охваченного 100%-ной последовательной ООС по напряжению. Коэффициент усиления по току каскада с ОК Кт.д к=1+Кт.д. Он всегда превышает единицу и максимален при Rн=0. Коэффициент усиления по напряжению

(5)

каскада с общим стоком

(6)

Из формул (5) и (6) следует, что такие каскады не способны усиливать напряжение.

Так как Кк=1, а Кт.д к>>1, то для БТ коэффициент усиления по мощности Крк каскада с ОК может быть больше единицы. Определим его как

Входное сопротивление БТ в каскаде с ОК

(7)

Оно сравнительно велико и заметно превышает Rвх каскада с ОЭ, при условии, что Rн не слишком мало.

Входное сопротивление ПТ в каскаде с общим стоком очень велико, значительно больше, чем для каскада с ОИ.

Выходное сопротивление каскада с ОК

(8)

мало, если Rн не очень велико, и по значению близко к Rвх.б, особенно при Rи<<h11.

Выходное сопротивление Rых.с каскада с общим стоком определяется по следующей формуле: Rвых.c=1/S.

При Rи→ 0 и Rн→ ∞ ОС получается более глубокой. Поэтому полоса пропускания каскада с ОК расширяется, но при этом f'в несколько меньше, чем fт. Так как каскад с ОК — неинвертирующий, то часть его входной емкости Свх.ос, вносимая транзистором, равна Свх.ос=Ск+Сбэ(1—Кк).

Отрицательный знак перед Кк показывает, что ОС через емкость Сбэ положительна, а так как Кк=1, то можно считать, что она уменьшает Свх.ос до Ск.

Поскольку выходное напряжение, снимаемое с эмиттера ВТ или истока ПТ по уровню и фазе очень близко к входному и как бы повторяет его, то такой каскад принято называть эмиттерным или истоковым повторителем.

32-33.Полевые транзисторы. Типы, особенности

Полевые транзисторы с затвором в виде р-n перехода.

Полевые транзисторы разделяют на униполярные (с одним p-n - переходом) и полевые с изолированным затвором (без p-n - перехода) или со структурой МДП (металл – диэлектрик – полупроводник). Действие полевых транзисторов основано на процессах управления основными носителями тока электрическим полем, перпендикулярным направлению их движения в полупроводнике. По способам управления указанные разновидности полевых транзисторов существенно различаются.

Униполярный транзистор представляет собой полупроводник с электронно-дырочным переходом, управляемым обратным напряжением. Конструкция и условные обозначения транзистора показаны на рис. 12.17.

а) б) в)

Рис. 12.17

Вывод З базы (в данном случае р-типа переход) принято называть затвором полевого транзистора. Вывод И от канала, из которого при электронном канале (n-типа) ток выходит, называется истоком. Второй вывод С называется стоком. Токи, проходящие по ним, называются токами истока и стока.

Униполярный транзистор выполняется из кристалла кремния или германия, например р-типа (подложка), в котором создаются две области n-типа: исток И и сток С – и р-n переход, область n которого является каналом.

Полевые транзисторы с изолированным затвором.

Транзистор с изолированным затвором (металл М), (рис. 12.18) представляет собой полупроводник П с токопроводящим слоем у поверхности соприкосновения с диэлектриком Д, концентрация носителей тока в котором изменяется в функции напряженности электрического поля, перпендикулярного направлению тока. Токопроводящий канал формируется (индуцируется) из неосновных носителей полупроводника, например из электроновn полупроводника с дырочной р электропроводностью (подложки) и электрическим полем, обусловленным напряжением .

В канале электроны являются основными носителями тока. Токопроводящий канал имеет противоположную подложке электропроводность и называется инверсионным слоем полупроводника. Инверсионный слой образуется у поверхности соприкосновения полупроводника с диэлектриком, поскольку электрическое поле сосредоточено практически только в диэлектрике (непроводящем слое). На границе их раздела происходит разрыв вектора напряженности поля, что в соответствии с электромагнитной теорией означает наличие поверхностного заряда.

Концентрация носителей тока в канале определяется количеством перемещенных электрическим полем из объема полупроводника электронов и, следовательно зависит от напряжения на затворе. Изменяется, в данном случае увеличивается, при возрастании напряженияи ток стокаIс, пропорциональный концентрации основных (для канала) носителей. В рассмотренном МДП-транзисторе с индуцированным каналом происходит обогащение канала носителями тока при положительном (канал n-типа) или при отрицательном (р-типа) напряжении . Как и униполярный, МДП-транзистор с индуцированным каналом может управляться напряжением одного знака. Однако образование инверсионного слоя возможно и при отсутствии напряжения на затворе. Поэтому существуют МДП-транзисторы со встроенным каналом. Их особенностью является возможность работы как с обогащением, так и с объединением канала, то есть возможность управления напряжением с изменяющейся полярностью. Истоком МДП-транзистора с каналомn-типа является область полупроводника, подключенная к отрицательному зажиму источника , а каналомр-типа – к положительному.

Транзистор со структурой МДП выполняется обычно на полупроводниковом кристалле П, кремния с дырочной проводимостью, в котором создают две области n-типа – исток И и сток С (рис. 12.19 а). Поверхность кристалла между истоком и стоком покрывают диэлектриком Д – двуокисью кремния, на котором располагается металлический слой М затвора З. Условные графические обозначения транзисторов с изолированным затвором и каналами n- и p-типов приведены на рис.12.19 б, в.

Полевые транзисторы, особенно с изолированным затвором, имеют очень большое входное сопротивление и практически не требуют мощности для управления ими. Для действия полевых транзисторов используются основные носители заряда полупроводника. Поскольку концентрация неосновных носителей является функцией внутренней энергии твердого тела (тепловой и др. видов), а концентрация основных носителей практически не зависит от нее, то полевые транзисторы менее подвержены воздействию температуры, радиационного излучения и других факторов, изменяющих внутреннюю энергию твердого тела.

Важная особенность полевых транзисторов состоит в возможности их работы при переменном напряжении UСИ, поскольку при симметричной конструкции исток и сток транзистора одинаковы, т. е. их можно использовать в цепях переменного тока как управляемые резисторы.