Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 7.doc
Скачиваний:
190
Добавлен:
13.08.2013
Размер:
192.51 Кб
Скачать

16

Лекция №7

Тема: Физиология труда и комфортные условия жизнедеятельности.

План лекции:

  1. Влияние микроклимата на производительность труда и состояние здоровья, профессиональные заболевания.

  2. Системы обеспечения параметров микроклимата и состава воздуха: отопление, вентиляция, кондиционирование; их устройство и требования к ним.

  3. Контроль параметров микроклимата.

  4. Освещение. Требования к системам освещения. Естественное и искусственное освещение. Светильники и источники света. Расчет освещенности. Контроль освещения

Рекомендуемая литература

  1. Алексеев С.В., Усенко В.Р. Гигиена труда. – М.: Медицина, 1998. – 244 с

  2. Безопасность жизнедеятельности: Учебник для студентов средних спец. Учеб. заведений / С.В. Белов, В.А. Девисилов, А.Ф. Козьяков и др. / под общ. ред. С.В. Белова. – М.: Высш. шк., 2003. – 357с.

  3. Безопасность жизнедеятельности. Под ред. проф. Э. А. Арустамова. М.: «Дашков и К°», 2003. -258 с.

  4. Беляков Г.И. Практикум по охране труда. – М.: Колос, 1999. – 192с.

  5. Хван Т.А., Хван П.А. Безопасность жизнедеятельности. Серия «Учебники и учебные пособия». Ростов н/Д: «Феникс», 2001. – 352 с.

  6. Чусов Ю.Н. Физиология человека. – М.: Просвещение, 1981. – 193 с.

1. Влияние микроклимата на производительность труда и состояние здоровья, профессиональные заболевания.

Микроклимат производственных помещений или метеоусловия, складываются из температуры воздуха в помещении, инфракрасного и ультрафиолетового излучения от нагретого оборудования, раскаленного металла и других нагретых поверхностей, влажности воздуха и его подвижности.

Все эти факторы, или метеорологические условия в целом, определяются двумя основными причинами: внутренними (тепло и влаговыделения) и внешними (метеорологические условия). Первые из них зависят от характера технологического процесса, оборудования и применяемых санитарно-технических устройств и, как правило, носят относительно постоянный характер для каждого цеха или отдельного участка производства; вторые — сезонного характера, резко изменяются в зависимости от времени года. Степень влияния внешних причин во многом зависит от характера и состояния наружных ограждений производственных зданий (стен, кровли, окон, въездных проемов и т. п.), а внутренних — от мощностей и степени изоляции источников выделения тепла, влаги и эффективности санитарно-технических устройств.

Тепловой режим производственных помещений определяется количеством тепловыделений внутрь цеха от горячего оборудования, изделий и полуфабрикатов, а также от солнечной радиации, проникающей в цех через открытые и остекленные проемы или нагревающей кровлю и стены здания, а в холодный период года — от степени отдачи тепла за пределы помещения и от отопления. Определенную роль играют тепловыделения от различного рода электродвигателей, которые при работе нагреваются и отдают тепло в окружающее пространство. Часть поступившего в цех тепла отдается наружу через ограждения, а остальное, так называемое явное тепло нагревает воздух рабочих помещений.

Согласно санитарным нормам проектирования промышленных предприятий (СН 245 — 71) производственные помещения по удельному тепловыделению делятся на две группы: холодные цехи, где явное тепловыделение в помещении не превышает 20 ккал/м3ч, и горячие цехи, где они выше этой величины.

Воздух цеха, постепенно соприкасаясь с горячими поверхностями источников тепловыделений, нагревается и поднимается вверх, а его место замещает более тяжелый холодный воздух, который, в свою очередь, также нагревается и поднимается вверх. В результате постоянного движения воздуха в цехе происходит его нагрев не только в месте нахождения источников тепла, но и на более отдаленных участках. Такой путь отдачи тепла в окружающее пространство называется конвекционным. Степень нагрева воздуха измеряется в градусах. Особенно высокая температура наблюдается на рабочих местах, не имеющих достаточного притока наружного воздуха или расположенных в непосредственной близости от источников тепловыделений.

Противоположная картина наблюдается в тех же цехах в холодный период года. Нагретый горячими поверхностями воздух поднимается вверх и частично уходит из цеха через проемы и неплотности в верхней части здания (фонари, окна, шахты); на его место подсасывается холодный наружный воздух, который до соприкосновения с горячими поверхностями нагревается очень мало, в силу чего нередко рабочие места омываются холодным воздухом.

Все нагретые тела со своей поверхности излучают поток лучистой энергии. Характер этого излучения зависит от степени нагрева излучающего тела. При температуре выше 500oС спектр излучения содержит как видимые— световые лучи, так и невидимые — инфракрасные лучи; при меньших температурах этот спектр состоит только из инфракрасных лучей.

Гигиеническое значение имеет в основном невидимая часть спектра, то есть инфракрасное, или, как его иногда не совсем правильно называют, тепловое излучение. Чем ниже температура излучаемой поверхности, тем меньше интенсивность излучения и больше длина волны; по мере увеличения температуры увеличивается интенсивность, но уменьшается длина волны, приближаясь к видимой части спектра.

Источники тепла, имеющие температуру 2500 — 3000o С и более, начинают излучать также ультрафиолетовые лучи (вольтова дуга электросварки или электродуговых печей). В промышленности для специальных целей используются так называемые ртутно-кварцевые лампы, которые излучают преимущественно ультрафиолетовые лучи.

Ультрафиолетовые лучи также имеют различные длины волн, но в отличие от инфракрасных по мере увеличения длины волны они приближаются к видимой части спектра. Следовательно, видимые лучи по длине волн находятся между инфракрасными и ультрафиолетовыми.

Инфракрасные лучи, попадая на какое-либо тело, нагревают его, что и послужило поводом называть их тепловыми. Это явление объясняется способностью различных тел в той или иной степени поглощать инфракрасные лучи, если температура облучаемых тел ниже температуры излучающих; при этом лучистая энергия превращается в тепловую, вследствие чего облучаемой поверхности передается то или иное количество тепла. Этот путь передачи тепла называется радиационным.

Различные материалы обладают различной степенью поглощения инфракрасных лучей, и, следовательно, при облучении они нагреваются по-разному. Воздух совершенно не поглощает инфракрасные лучи и поэтому не нагревается, или, как принято говорить, он является теплопрозрачным. Блестящие, светлые поверхности (например, алюминиевая фольга, полированные листы жести) отражают до 94 — 95% инфракрасных лучей, а поглощают всего 5 — 6%. Черные матовые поверхности (например, покрытие сажей) поглощают почти 95 — 96% этих лучей, поэтому нагреваются более интенсивно.

При полном поглощении инфракрасных лучей в результате полного превращения лучистой энергии в тепловую облучаемый предмет получает определенное количество тепла, которое принято измерять в малых калориях на 1 см2 облучаемой поверхности в минуту (г.кал/см2.мин). Эту величину принимают за единицу интенсивности облучения. Интенсивность инфракрасного облучения возрастает по мере повышения температуры источника излучения и увеличения площади его поверхности и уменьшается в квадратной пропорции по мере удаления от источника излучения. Инфракрасное излучение, как правило, происходит от тех же источников, что и выделение конвекционного тепла.

Рабочие горячих цехов постоянно или периодически подвергаются воздействию инфракрасного излучения, в результате чего они получают извне то или иное количество тепла. Интенсивность облучения на рабочих местах в зависимости от размеров и температуры источников излучения и расстояния от него рабочих мест колеблется в широких пределах: от нескольких десятых долей до 8 — 10 г.кал/см2.мин. При выполнении отдельных кратковременных операций интенсивность облучения достигает 13 — 15 г.кал/см2.мин. Для сравнения следует указать, что интенсивность солнечной радиации в летний безоблачный день достигает лишь 1,3 — 1,5 г.кал/см2.мин.

Инфракрасное излучение не оказывает прямого действия на воздух, но косвенным путем способствует его нагреву. Подвергающиеся облучению различные предметы, оборудование, конструкции и даже стены нагреваются и сами становятся источниками тепловыделения как радиационным, так и конвекционным путем. От них-то и нагревается воздух цеха.

При работе с вольтовой дугой или ртутно-кварцевыми лампами, излучающими ультрафиолетовые лучи, рабочие могут подвергаться облучению, если они не защищены от прямого попадания этих лучей в глаза или на кожный покров. Ультрафиолетовые лучи хорошо проходят через воздух, но почти не проходят через любую плотную ткань; даже обычное стекло их почти не пропускает.

В каждом помещении, и тем более в производственных цехах, воздух всегда находится в состоянии движения, которое создается вследствие разности температур в различных частях здания и по площади и по высоте. Разность температур образуется в результате инфильтрации и подсоса более холодного наружного воздуха через окна, фонари, фрамуги, ворота.

Более сильное движение наблюдается в тех случаях, когда в цехе имеются источники тепловыделения, которые нагревают воздух и заставляют его быстро подниматься вверх. Скорость движения или подвижность воздуха, измеряется в м/с.

Мощные источники тепловыделения в цехах являются причиной значительных потоков воздуха, скорость которых иногда достигает 4-5 м/с. Особенно большие скорости движения создаются вблизи открытых проемов (ворот, окон и т. п.), где имеется возможность подсоса более холодного наружного воздуха. Вследствие больших скоростей холодные струи проходят значительные расстояния без достаточного разбавления теплым воздухом цеха, обдувая рабочих и создавая резкие колебания температур, что в быту называют сквозняками.

На отдельных же участках могут создаваться неблагоприятные условия для естественного конвекционного потока. Чаще всего такое положение наблюдается на участках, удаленных от проемов, ограниченных стенами и там, где подъему нагретого воздуха вверх препятствуют какие-либо глухие перекрытия (потолки). Подвижность воздуха сокращается до минимальных величин (0,05 — 0,1 м/с), что приводит к его застою и перегреванию, особенно если участки расположены вблизи от источников тепловыделений.

Как в наружном, так и в воздухе производственных помещений содержится некоторое количество водяных паров, создавая определенную влажность воздуха. Количество водяных паров, выраженное в граммах, содержащихся в килограмме или в кубическом метре воздуха, называется абсолютной влажностью.

Увеличение количества водяных паров при одной и той же температуре может происходить лишь до определенного предела, после чего пары начинают конденсироваться. Такое состояние, когда количество водяных паров (в граммах) способно насытить 1 кг или 1 м3 воздуха при данной температуре до предела, называется максимальной влажностью. Чем выше температура воздуха, тем больше надо водяных паров, чтобы довести этот воздух до максимальной влажности. Следовательно, максимальная влажность воздуха при разных температурах различна, причем для каждой температуры эта величина постоянна.

Для измерения влажности воздуха чаще всего пользуются показателем относительной влажности, то есть отношением абсолютной влажности к максимальной, насыщаемой воздух до предела при данной температуре, выраженной в процентах. Таким образом, относительная влажность показывает процент насыщения воздуха водяными парами при данной температуре.

Помимо влагосодержания поступающего наружного воздуха, внутри цеха могут быть дополнительные источники влаговыделения. Главным образом это открытые технологические процессы, сопровождающиеся использованием воды или водных растворов, особенно если эти процессы идут с подогревом. Определенная часть влаги выделяется также от самих работающих при дыхании и потовыделении, однако практически это не играет большой роли.

В производственных условиях наблюдается весьма различная влажность воздуха — от 5-10 до 70-80%, при наличии обильных влаговыделений (красильно-отбелочные цехи текстильных фабрик, моечные отделения различных производств, прачечные) — иногда до 90-95%, а в холодный период года — до 100%, то есть до туманообразования.

Микроклимат рабочей среды оказывает влияние на процесс теплообмена и характер работы. Длительное воздействие на человека неблагоприятных метеорологических условий резко ухудшает его самочувствие, снижает: производительность труда и приводит к заболеваниям.

Высокая температура воздуха способствует быстрой утомляемости работающего, может привести к перегреву организма, тепловому удару или профзаболеванию. Низкая температура воздуха может вызвать местное или общее охлаждение организма, стать причиной простудного заболевания либо обморожения. Высокая температура воздуха оказывает неблагоприятное влияние на жизненно важные органы и системы человека (сердечно-сосудистую, центральную нервную систему, пищеварительную), вызывая нарушения нормальной их деятельности, а при наиболее неблагоприятных условиях может вызвать серьезные заболевания в виде перегревания организма, называемые в быту тепловыми ударами.

В отличие от высокой температуры инфракрасное облучение характеризуется прежде всего местным действием, но оказывает также и общее действие на организм, которое во многом похоже на действие высокой температуры; в частности, при облучении инфракрасными лучами наблюдается повышение температуры тела, усиление потоотделения, учащение пульса и повышение газообмена; иногда отмечается понижение кровяного давления, учащение дыхания.

Ультрафиолетовые лучи различной длины волны по-разному действуют на организм человека. По биологической активности их можно условно разделить на три участка:

  • с длиной волн свыше 315 мкм, то есть находящиеся на границе с видимыми лучами, обладающие малой активностью;

  • с длиной волн от 280 до 315 мкм, оказывающие сильное действие на кожные покровы, вызывая дерматиты, отечность, жжение, зуд;

  • с длиной волны менее 280 мкм — наиболее активные, действующие на тканевые белки и липоиды.

При прямом попадании ультрафиолетовых лучей в глаза, особенно малой и средней длины, волны, они оказывают на орган зрения острое действие, выражающееся в значительных болевых ощущениях, жжении, в чувстве песка в глазах, светобоязни, покраснении и припухлости слизистых. Все эти явления так называемой электроофтальмии появляются через 6-8 часов после воздействия ультрафиолетовых лучей и продолжаются иногда до двух суток.

Ультрафиолетовые лучи в определенных, относительно небольших дозах оказывают и положительное влияние на организм: стимулируют кроветворные функции организма; образование витамина Д, улучшают обмен веществ, обладают бактерицидностью, иммунизирующими свойствами. В силу этих свойств ультрафиолетовые облучения широко используются в медицине в качестве профилактического и лечебного средства, а также как средство обезвреживания воздушной среды и предметов, загрязненных микробами.

Влажность и подвижность воздуха в комплексе с другими факторами оказывают существенное влияние на организм человека, играя важную роль в терморегуляции организма.

Влажность воздуха оказывает значительное влияние на терморегуляцию организма человека. Высокая относительная влажность (отношение содержания водяных паров в 1 м3 воздуха к их максимально возможному содержанию в этом же объеме) при высокой температуре воздуха способствует перегреванию организма, при низкой же температуре она усиливает теплоотдачу с поверхности кожи, что ведет к переохлаждению организма. Низкая влажность вызывает пересыхание слизистых оболочек дыхательных путей работающего.

Подвижность воздуха эффективно способствует теплоотдаче организма человека и положительно проявляется при высоких температурах, но отрицательно при низких.

На рис.1. приведена классификация производственного микроклимата.

Производственный микроклимат

комфортный

с повышенной влажностью

переменный

операторские помещения сборочного цеха

при нормальной и низкой температуре

при повышенной температуре

работа на открытом воздухе

гальванические цеха

окрасочные цеха

нагревающий

охлаждающий

с преобладанием радиационного тепла

с преобладанием конвекционного тепла

с субизомтрической температурой воздуха

с низкой температурой воздуха

прокатные цеха литейные цеха

турбинные цеха химические цеха

от +10°С до –10°С

ниже –10°С

Рис.1. Виды производственного микроклимата

Субъективные ощущения человека меняются в зависимости от изменения параметров микроклимата (табл. 1).

Таблица 1. Зависимость субъективных ощущений человека от параметров рабочей среды

Температура воздуха, °С

Относительная

влажность воздуха, %

Субъективные ощущения

21

40

75

85

90

Наиболее приятное состояние.

Хорошее, спокойное состояние.

Отсутствие неприятных ощущений.

Усталость, подавленное состояние.

24

20

65

80

100

Отсутствие неприятных ощущений.

Неприятные ощущения.

Потребность в покое.

Невозможность выполнения тяжелой работы.

30

25

50

65

80

90

Неприятные ощущения.

Нормальная работоспособность.

Невозможность выполнения тяжелой работы.

Повышение температуры тела.

Опасность для здоровья.

Соседние файлы в предмете Безопасность в чрезвычайных ситуациях