Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
23
Добавлен:
19.05.2015
Размер:
7.55 Кб
Скачать
5. Для чего используются математические модели в системах управления? Какие виды описаний объекта процесса применяются при разработке математических моделей?


Наиболее плодотворным методом описания свойств объектов регулирования (как и других элементов САР) является метод математического моделирования. Его суть заключается в том, что объект формально рассматривается как преобразователь поступающих на его вход сигналов в выходной сигнал. Математическая зависимость, связывающая выходной сигнал объекта с входным, называется математической моделью или характеристикой объекта регулирования.

При математическом моделировании полностью абстрагируются от физической природы сигналов и самого процесса, происходящего в объекте. Поэтому одинаковые уравнения могут описывать поведение теплообменника, напорного бака или химического реактора при условии, что, как объекты регулирования, они обладают одинаковыми характеристиками. Переход от физического прототипа к математической модели дает ряд преимуществ.


Математи?ческая моде?ль — это математическое представление реальности[1].
Математическое моделирование — это процесс построения и изучения математических моделей.
Все естественные и общественные науки, использующие математический аппарат, по сути занимаются математическим моделированием: заменяют объект его математической моделью и затем изучают последнюю. Связь математической модели с реальностью осуществляется с помощью цепочки гипотез, идеализаций и упрощений. С помощью математических методов описывается, как правило, идеальный объект, построенный на этапе содержательного моделирования.


математическая модель — это «„эквивалент“ объекта, отражающий в математической форме важнейшие его свойства — законы, которым он подчиняется, связи, присущие составляющим его частям, и т.д.»

Прямая и обратная задачи математического моделирования

Существует множество задач, связанных с математическим моделированием. Во-первых, надо придумать основную схему моделируемого объекта, воспроизвести его в рамках идеализаций данной науки. Так, вагон поезда превращается в систему пластин и более сложных тел из разных материалов, каждый материал задается как его стандартная механическая идеализация (плотность, модули упругости, стандартные прочностные характеристики), после чего составляются уравнения, по дороге какие-то детали отбрасываются как несущественные, производятся расчёты, сравниваются с измерениями, модель уточняется, и так далее. Однако для разработки технологий математического моделирования полезно разобрать этот процесс на основные составные элементы.
Традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные.
Прямая задача: структура модели и все её параметры считаются известными, главная задача — провести исследование модели для извлечения полезного знания об объекте. Какую статическую нагрузку выдержит мост? Как он будет реагировать на динамическую нагрузку (например, на марш роты солдат, или на прохождение поезда на различной скорости), как самолёт преодолеет звуковой барьер, не развалится ли он от флаттера, — вот типичные примеры прямой задачи. Постановка правильной прямой задачи (задание правильного вопроса) требует специального мастерства. Если не заданы правильные вопросы, то мост может обрушиться, даже если была построена хорошая модель для его поведения. Так, в 1879 г. в Великобритании обрушился металлический мост через реку Тей, конструкторы которого построили модель моста, рассчитали его на 20-кратный запас прочности на действие полезной нагрузки, но забыли о постоянно дующих в тех местах ветрах. И через полтора года он рухнул.[22]
В простейшем случае (одно уравнение осциллятора, например) прямая задача очень проста и сводится к явному решению этого уравнения.
Обратная задача: известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных об объекте. Чаще всего структура модели известна, и необходимо определить некоторые неизвестные параметры. Дополнительная информация может состоять в дополнительных эмпирических данных, или в требованиях к объекту (задача проектирования). Дополнительные данные могут поступать независимо от процесса решения обратной задачи (пассивное наблюдение) или быть результатом специально планируемого в ходе решения эксперимента (активное наблюдение).
Одним из первых примеров виртуозного решения обратной задачи с максимально полным использованием доступных данных был построенный И. Ньютоном метод восстановления сил трения по наблюдаемым затухающим колебаниям.
В качестве другого примера можно привести математическую статистику. Задача этой науки — разработка методов регистрации, описания и анализа данных наблюдений и экспериментов с целью построения вероятностных моделей массовых случайных явлений[23]. Т.е. множество возможных моделей ограничено вероятностными моделями. В конкретных задачах множество моделей ограничено сильнее.


математическая модель является не самоцелью, а только средством для решения определенной проблемы. В связи с этим необходимость создания математической модели вытекает из выбираемой исследователем методологии решения проблемы. Для решения сложных проблем обычно применяют так называемый системный поход, в котором моделирование является основным методом исследования. В целом системный подход предполагает следующие этапы решения проблемы:

* изучение предметной области (обследование),
* выявление и формулирование проблемы,
* математическая (формальная) постановка проблемы,
* натурное и/или математическое моделирование исследуемых объектов и процессов,
* статистическая обработка результатов моделирования,
* формулирование альтернативных решений,
* оценка альтернативных решений,
* формулирование выводов и предложений по решению проблемы.


Цель концептуального проектирования математической модели состоит в определении принципиальных решений по созданию построению и использованию будущей модели в процессе решения проблемы, стоящей перед исследователем. Для достижения этой цели должны быть решены следующие задачи:

1. определение сути исследуемой системы, которую составляют наименование, состав, структура и целевая функция системы;
2. определение сути каждого элемента системы или ее подсистем;
3. выяснение и описание процесса функционирования системы, как последовательности состояний из множества Q (t), возникающих под воздействием внешних и внутренних факторов из множества X(t);
4. определение показателя эффективности функционирования системы, как функции выхода системы Y(t);
5. отбор подмножества наиболее существенных факторов и показателей, характеризующих процесс функционирования системы;
6. определение характера взаимосвязей между входом, состоянием и выходом системы, формализация математической модели процесса в общем виде;
7. постановка задачи на разработку технического, программного и информационного обеспечения моделирования данного процесса на ЭВМ.

Методики решения перечисленных задач концептуального моделирования будем рассматривать на следующих примерах:

1. уточнение параметров орбиты космического аппарата по траекторным измерениям с наблюдательных пунктов;
2. определение вероятности безотказной работы сложной системы по заданным средним значениям вероятностей безотказной работы ее элементов;
3. определение показателей функционирования вычислительной системы коллективного пользования с заданной дисциплиной обслуживания;
4. определение эффективности функционирования системы космического наблюдения за наземными объектами.
Соседние файлы в папке госы мехатроника