Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
50
Добавлен:
20.05.2015
Размер:
391.17 Кб
Скачать

Тема 5. Организация прерываний в эвм.

Лекция 12. Организация прерываний в ЭВМ

1. Аппаратные прерывания

2. Использование прерываний для работы с устройствами

1. Аппаратные прерывания

Аппаратные прерывания обеспечивают реакцию процессора на события, происходящие асинхронно по отношению к исполняемому программному коду. Аппаратные прерывания делятся на маскируемые и немаскируемые. На немаскируемое прерывание (NMI) процессор реагирует всегда (если обслуживание предыдущего NMI завершено); этому прерыванию соответствует фиксированный вектор 2. Немаскируемые прерывания в PC используются для сигнализации о фатальных аппаратных ошибках. Сигнал на линию NMI приходит от схем контроля паритета памяти, от линий контроля шины ISA (IOCHK) или шины PCI (SERR#). Сигнал NMI блокируется до входа процессора установкой в 1 бита 7 порта 070h, отдельные источники разрешаются и идентифицируются битами порта 061h:

бит 2 R/W – ERP – разрешение контроля ОЗУ и сигнала SERR# шины PCI;

бит 3 R/W – EIC – разрешение контроля шины ISA;

бит 6 R – IOCHK – ошибка контроля на шине ISA (сигнал IOНК#);

бит 7 R – РСК – ошибка четности ОЗУ или сигнал SERR* на шине PCI.

Реакция процессора на маскируемые прерывания может быть задержана сбросом его внутреннего флага IF (инструкции СLI – запретить прерывания, STI – разрешить). По возникновении события, требующего реакции, адаптер (контроллер) устройства формирует запрос прерывания, который поступает на вход контроллера прерываний. Контроллер прерываний формирует общий запрос маскируемого прерывания для процессора, а когда процессор подтверждает этот запрос, контроллер сообщает процессору вектор прерывания, по которому выбирается программная процедура обработки прерываний. Процедура должна выполнить действия по обслуживанию данного устройства, включая сброс его запроса для обеспечения возможности реакции на следующие события и посылку команды завершения в контроллер прерываний. Вызывая процедуру обработки, процессор автоматически сохраняет в стеке значение всех флагов и сбрасывает флаг IF, что запрещает маскируемые прерывания. При возврате из процедуры (по инструкции IRET) процессор восстанавливает сохраненные флаги, в том числе и установленный IF, что снова разрешает прерывания. Если во время работы обработчика прерываний требуется реакция на иные прерывания (более приоритетные), то в обработчике должна присутствовать инструкция STI. Особенно это касается длинных обработчиков; здесь инструкция STI должна вводиться как можно раньше, сразу после критической (не допускающей прерываний) секции. Следующие прерывания того же или более низкого уровня приоритета контроллер прерываний будет обслуживать только после получения команды завершения прерывания EOI (End Of Interrupt).

Маскируемые прерывания используются для сигнализации о событиях в устройствах. Обработка сигналов запросов прерывания выполняется контроллером прерываний. Контроллер прерываний позволяет маскировать отдельные входы запросов и организовывать систему приоритетов запросов от различных входов. В машинах класса AT применяется каскадное соединение двух контроллеров. Ведущий контроллер обслуживает запросы 0, 1, 3-7; его выход подключается к входу запроса прерываний процессора. К его входу 2 подключен ведомый контроллер, который обслуживает запросы 8-15. При этом поддерживается вложенность приоритетов — запросы 8-15 со своим рядом убывающих приоритетов вклиниваются между запросами 1 и 3 ведущего контроллера, приоритеты запросов которого также убывают с ростом номера.

В таблице 1 отражены аппаратные прерывания (в порядке убывания приоритета). Номера векторов, соответствующих линиям запросов контроллеров, система приоритетов и некоторые другие параметры задаются программно при инициализации контроллеров. Эти основные настройки остаются традиционными для обеспечения совместимости с программным обеспечением.

Таблица 1

Аппаратные прерывания (в порядке убывания приоритета)

Имя (номер)

Вектор

Контроллер/маска

Описание

NMI

02h

Контроль канала, паритета (в XT – сопроцессор)

IRQ0

08h

#1/1h

Таймер (канал 0 8253/8254)

IRQ1

09h

#1/2h

Клавиатура

IRQ2

0Ah

#1/4h

XT — резерв, AT — недоступно (подключается каскад IRQ8-IRQ15)

IRQ8

70h

#2/1 h

CMOS RTC — часы реального времени

IRQ9

71h

#2/2h

Резерв

IRQ10

72h

#2/4h

Резерв

IRQ11

73h

#2/8h

Резерв

IRQ12

74h

#2/10h

PS/2-Mouse (резерв)

IRQ 13

75h

#2/20h

Математический сопроцессор

IRQ14

76h

#2/40h

HDC — контроллер НЖМД

IRQ15

77h

#2/80h

Резерв

IRQ3

0Bh

#1/4h

COM2, COM4

IRQ4

0Ch

#1/10h

COM1,COM3

IRQ5

0Dh

#1/20h

XT — HDC, AT — LPT2, Sound (резерв)

IRQ6

OEh

#1/40h

FDC — контроллер НГМД

IRQ7

OFh

#1/80h

LPT1 — принтер

Запросы прерываний 0,1,8 и 13 на шины расширения не выводятся.

Для запросов прерывания с шины PCI используются 4 линии запросов прерывания, которые обозначают как INTR А, В, С, D. Эти линии работают по низкому уровню, что дает возможность их разделения (совместного использования). Линии циклически сдвигаются в слотах и независимо коммутируются на доступные линии IRQx с помощью конфигурационных регистров чипсета. Линии IRQx, используемые шиной PCI, становятся недоступными для шины ISA. «Дележку» линий между шинами, а также управление чувствительностью отдельных линий обеспечивают параметры CMOS Setup, а также система PnP. В параметрах ISA или Legacy подразумевают использование линий IRQx традиционными адаптерами шины ISA (статическое распределение), a PCI/PnP — использование адаптерами шины PCI или адаптерами PnP для шины ISA (динамическое распределение). Общая схема формирования запросов прерываний изображена на рис. 1.

Рис. 1. Коммутация запросов прерываний

Каждому устройству, для поддержки работы которого требуются прерывания, должен быть назначен свой номер прерывания. Назначения номеров прерываний выполняются с двух сторон: во-первых, адаптер, нуждающийся в прерываниях, должен быть сконфигурирован на использование конкретной линии шины (джамперами или программно). Во-вторых, программное обеспечение, поддерживающее данный адаптер, должно быть проинформировано о номере используемого вектора. В процессе назначения прерываний может участвовать система PnP для шин ISA и PCI, для распределения линий запросов между шинами служат специальные параметры CMOS Setup.

На современных системных платах функции контроллеров прерываний возлагаются на чипсет, который может иметь и более гибкие возможности управления, чем пара контроллеров (ведущий и ведомый).

Совместное использование прерываний

Линии запросов прерываний в компьютере, насыщенном дополнительными адаптерами, являются самым дефицитным ресурсом, поэтому возникает желание использовать эти линии совместно, то есть применять разделяемые прерывания между несколькими устройствами (shared interrupts). Обработчики прерываний (программы) от разных устройств, разделяющих одну линию запроса (и следовательно, общий вектор прерывания), должны быть выстроены в цепочку. В процессе обработки прерывания очередной обработчик в цепочке чтением известного ему регистра своего устройства должен определить, не это ли устройство вызвало прерывание. Если это, то обработчик должен выполнить необходимые действия и сбросить сигнал запроса прерывания от своего устройства, после чего передать управление следующему обработчику в цепочке; в противном случае он просто передает управление следующему обработчику.

Разделяемые прерывания для разнотипных устройств в общем случае работоспособными считать нельзя. Во-первых, у каждого устройства факт прерывания программно обнаруживается по-своему, и этот способ знает только драйвер этого устройства. Так что программно для совместного использования прерываний их обработчики должны уметь выстраиваться в цепочки, что на практике выполняется не всегда корректно. Во-вторых, возможны потери прерываний от устройств, требующих быстрой реакции. Это может происходить, если обработчик такого устройства окажется в конце цепочки, а предшествующие ему обработчики окажутся «нерасторопными» (не самым быстрым способом обнаружат, что прерывание – не их). Поведение системы в такой ситуации может меняться в зависимости от порядка загрузки драйверов. Для нескольких однотипных устройств (например, сетевых адаптеров на одном и том же кристалле), пользующихся одним драйвером, разделяемые прерывания работают вполне успешно.

Проявления конфликтов и ошибок назначения прерываний могут быть разнообразными. Сетевая карта при ошибке в прерываниях не сможет принимать кадры из сети (при этом она может их успешно посылать). У устройств хранения доступ к данным будет поразительно медленным (иногда можно минутами ожидать, например, появления информации о файлах и каталогах) или вообще невозможным. Звуковые карты будут молчать или «заикаться», на видеопроигрывателях изображение будет дергаться и так далее. Конфликты могут приводить и к внезапным перезагрузкам компьютера, например по приходу кадра из сети или сигналу от модема.

Программные прерывания по сути прерываниями и не являются – это лишь короткая форма дальнего вызова ограниченного количества процедур, выполняемая инструкцией Int N (N=0-255). Программные прерывания, в частности, используются для вызовов сервисов BIOS и ОС. Исключения генерируются процессором и сопроцессором, когда при исполнении инструкций возникают особые условия (например, деление на ноль или срабатывание защиты). Исключения занимают векторы прерываний 0-31, которые частично пересекаются с векторами аппаратных прерываний ведущего контроллера и NMI, а также с векторами сервисов BIOS. На исключениях строится защита и виртуальная память в многозадачных ОС защищенного режима.

В реальном режиме прерывания работают довольно просто, и их обработчики могут находиться в любом месте физически адресуемой памяти (ОЗУ или ПЗУ). В таблице прерываний, начинающейся с нулевого адреса, каждый вектор прерываний представляется дальним указателем на процедуру обработки (16-байтные смещение и сегмент). Внедрение собственных обработчиков прерываний представляет собой несложную задачу, если прерывание используется монопольно одним устройством и соответствующим ему единственным модулем ПО. В реальном режиме любая программа может управлять флагом разрешения аппаратных прерываний; некорректное управление флагом может приводить к различным неприятностям – от сбоя системного времени до «зависания» компьютера.

В защищенном режиме прерывания работают гораздо сложнее. Таблица прерываний здесь содержит 8-байтные дескрипторы прерываний. Их обработчики должны быть подключены к ядру ОС, постоянно присутствующему в физической памяти. Иначе возможна ситуация, когда, например, аппаратное прерывание вызовет обработчик, выгруженный в данный момент на диск менеджером виртуальной памяти. Обработка такого прерывания будет чрезвычайно долгой (потребуется подкачка страницы). Позволять любой программе управлять флагом разрешения прерываний для многозадачных ОС нельзя из соображений общей устойчивости системы.

Соседние файлы в папке УМК_Орг_ЭВМ