Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ОИУСЗИ / MSZI_2003

.pdf
Скачиваний:
90
Добавлен:
20.05.2015
Размер:
7.81 Mб
Скачать

Излучатели электромагнитных колебаний 111

Рис. 4.3. Прием НЧ сигналов

Высокочастотные излучатели

К группе высокочастотных (ВЧ) излучателей относятся ВЧ автогенераторы, модуляторы ВЧ колебаний и устройства, генерирующие паразитные ВЧ колебания по различным причинам и условиям (рис. 4.4).

Источниками опасного сигнала являются ВЧ генераторы радиоприемников, телевизоров, измерительных генераторов, мониторы ЭВМ.

Рис. 4.4. Классификация излучателей ВЧ сигналов

Модуляторы ВЧ колебаний как элементы, обладающие нелинейными характеристиками (диоды, транзисторы, микросхемы), образуют нежелательные составляющие ВЧ характера.

Довольно опасными источниками ВЧ колебаний могут быть усилители и другие активные элементы технических средств, работающие в режиме паразитной генерации за счет нежелательной положительной обратной связи.

Источниками излучения ВЧ колебаний в различной аппаратуре являются встроенные в них генераторы, частота которых по тем или иным причинам может быть промодулирована речевым сигналом.

В радиоприемниках, телевизорах, магнитофонах, трехпрограммных громкоговорителях и в ряде электроизмерительных приборов всегда имеются встроенные генераторы (гетеродины). К ним примыкают различные усилительные системы — усилители НЧ, сис-

112 Глава 4. Каналы несанкционированного получения информации

темы звукоусиления, способные по тем или иным причинам войти в режим самовозбуждения (т.е. по существу стать неконтролируемым гетеродином).

Основным элементом гетеродина является колебательный контур с конденсатором переменной емкости. Под воздействием акустического давления будет меняться расстояние между пластинами переменного воздушного конденсатора гетеродина. Изменение расстояния приведет к изменению емкости, а последнее — к изменению значения частоты гетеродина (ωo = 1/ LC) по закону акустического давления, т.е. к частотной модуляции гетеродина акустическим сигналом.

Кроме конденсаторов, акустическому воздействию подвержены катушки индуктивности с подстроечными сердечниками, монтажные провода значительной длины.

Практика показала, что акустическая реакция гетеродина возможна на расстоянии до нескольких метров, особенно в помещениях с хорошей акустикой. В зависимости от типа приемника, прием такого сигнала возможен на значительном расстоянии, иногда достигающем порядка 1–2 км. Источником излучения ВЧ колебаний в аппаратуре звукозаписи является генератор стирания-подмагничивания, частота которого может быть промодулирована речевым сигналом за счет нелинейных элементов в усилителе записи, головки записи и др. из-за наличия общих цепей электропитания взаимного проникновения в тракты усиления.

В цепях технических средств, находящихся в зоне воздействия мощных ВЧ излучений, напряжение наведенных сигналов может составлять от нескольких до десятков вольт. Если в указанных цепях имеются элементы, параметры которых (индуктивность, емкость или сопротивление) изменяются под действием НЧ сигналов, то в окружающем пространстве будет создаваться вторичное поле ВЧ излучения, модулированное НЧ сигналом (рис. 4.5).

Рис. 4.5. Классификация излучателей ВЧ сигналов

Роль нелинейного элемента могутиграть:

телефоны, различные датчики (ВЧ навязывание по проводам);

приемники, магнитофоны (ВЧ навязывание по эфиру).

Как правило, причиной излучения кабелей является плохое состояние:

соединителей;

направленных ответвлений и т.п.

Теоретически, если нет дефектов в экранирующей оплетке (экране) кабеля, его экран ослабляет излучение более чем в 100 дБ. Этого более чем достаточно для предотвращения любого излучения кабеля, которое можно зарегистрировать. Для того чтобы сигнал

Рис. 4.6. Типы волн, распространяющихся по световодам

Излучатели электромагнитных колебаний 113

был зарегистрирован приемником, его максимальный уровень в кабеле не превышает 100 мкВ, а минимальный на поверхности кабеля — не более 1 мкВ.

Тепловой шум на входе приемника ограничивает прием сигнала. Это подтверждается расчетными значениями уровня шума в широкополосном кабеле (табл. 4.1).

Таблица 4.1. Уровни шума в широкополосном кабеле

Скорость передачи

Требуемая полоса

Среднеквадратическое значение

данных, Мбит/с

пропускания, МГц

шума в полосе приемника, мкВ

5

6

2,68

0,1

0,3

0,6

0,01

0,03

0,2

Из табл. 4.1 видно, что среднеквадратическое значение теплового шума на поверхности кабеля выше 1 мкВ для кабеля с высокой скоростью передачи данных (отношение сигнал/шум больше 1). При таких значениях вполне возможен перехват данных по излучению кабеля. С увеличением расстояния между кабелем и приемником эта возможность уменьшается, т.к. затухание излучения равно

А = 20 log(4πd/λ),

где d — расстояние до кабеля, λ — длина волны излучения кабеля.

Таким образом, при исправном кабеле перехватить информацию по излучению очень трудно. Однако на практике кабели не всегда экранированы. Это приводит к тому, что неисправные или покрытые коррозией соединители могут быть причиной значительных излучений. Сигнал в 1 мкВ может быть обнаружен на расстоянии 3 м от кабеля, а в 1 мВ — на расстоянии 300 м.

Оптические излучатели

В волоконно-оптических линиях связи (ВОЛС) существуют волны трех

типов: направляемые, вытекающие и излучаемые (рис. 4.6).

Направляемые волны — это основной тип волны, распространяющейся по ВОЛС.

Излучаемые волны возникают при вводе света в волновод. Здесь определенная часть энергии уже в начале ли-

нии излучается в окружающее пространство и не распространяется вдоль световода. Это связано с дополнительными потерями энергии и приводит к возможности приема излучаемых в пространство сигналов.

Вытекающие волны частично распространяются вдоль волновода, а частично переходят в оболочку и распространяются в ней или выходят наружу. Причины воз-

114 Глава 4. Каналы несанкционированного получения информации

никновения излучения (утечки световой информации) в разъемных соединениях ВОЛС представлены на рис. 4.7.

Все эти причины приводят к излучению световых сигналов в окружающее пространство, что приводит к затуханию, или потере, полезного сигнала в волоконно-оптических линиях связи (ВОЛС).

Исходя из особенностей оптического волокна (ОВ), модель затухания сигнала в ВОЛС должна включать в себя две части:

затухание оптического сигнала (ОС), обусловленное физическими особенностями ОВ;

затухание ОС, обусловленное преднамеренными действиями на ОВ потенциального нарушителя.

а) радиальная несогласованность стыкуемых волокон;

б) угловая несогласованность осей световодов;

в) наличие зазора между торцами световода;

г) наличие взаимной непараллельности торцов волокон;

д) разница в диаметрах сердечников стыкуемых волокон.

Рис. 4.7. Причины возникновения излучения в ВОЛС

Затухание ОС за счет физических особенностей ОВ обусловлено существованием потерь при передаче информации.

При распространении оптического импульса вдоль однородного волокна мощность P и энергия W импульса уменьшаются из-за потерь энергии, вызванных рассеянием и поглощением по экспоненциальному закону (закон Бугера, рис. 4.8) и определяется, как

P(L) = P(0) e–αL, W(L) = W(0) e–αL

Излучатели электромагнитных колебаний 115

Рис. 4.8. Закон Бугера. Зависимость мощностей световых импульсов от расстояния вдоль волокна на длинах волн 1550 нм, 1300 нм и 985 нм

Здесь P(L) — мощность излучения на расстоянии L; P(0) — мощность излучения в начальной точке; α — коэффициент затухания, определяемый выражением:

1P(0)

α= L ln P(L)

В единицах дБ/км коэффициент ослабления α может быть выражен, как

10 P(0)

α(дБ/км) = L log P(L) = 4.343α (км–1)

Зависимость коэффициента затухания от длины волны проиллюстрирована на рис. 4.9.

Рис. 4.9. Зависимость коэффициента затухания от длины волны

116 Глава 4. Каналы несанкционированного получения информации

Затухание света в ОВ включает в себя потери на поглощение, потери на рассеяние и кабельные потери. В свою очередь, потери на поглощение (αпогл) и на рассеяние (αрас)

вместе определяются, как собственные потери (αсобств), а кабельные потери (αкаб) и потери, связанные с несанкционированным доступом (НСД), в силу их физической приро-

ды, можно назвать дополнительными потерями (αдоп).

Затухание сигнала в ОВ зависит от длины волны и составляет 0,5 дБ/км для 1300 нм и 0,3 дБ/км для 1550 нм стандартного одномодового волокна (сплошная линия). Это волокно имеет пик затухания в области 1400 нм, который является результатом поглощения энергии молекулами воды. Пунктирной линией на рис. 4.9 показано затухание для волокна AllWave®, свободного от воды.

Таким образом, полное затухание в ОВ с учетом НСД можно представить в следующем виде:

α = αсобств + αдоп = αпогл + αрас + αкаб + αНСД

Потери на поглощение αпогл состоят из потерь в кварцевом стекле, которые определяются, как ультрафиолетовое и инфракрасное поглощение, а также из потерь, связан-

ных с поглощением оптической энергии на примесях (αпримеси). Потери в кварцевом стекле вызываются собственным поглощением атомами оптического материала — квар-

ца (αс.о.м.) и поглощением атомными дефектами в стеклянном составе (αдефект)).

αпогл = αс.о.м. + αдефект + αпримеси

Основной реакцией стекловолокна на атомное излучение является увеличение затухания оптической энергии вследствие создания атомных дефектов, или центров ослабления, которые поглощают оптическую энергию.

Поглощение на примесях (загрязнениях) возникает преимущественно от ионов металла и от OH (водяных) ионов. Примеси металла обуславливают потери от 1 до 10 дБ/км.

Ранее ОВ имели высокий уровень содержания OH-ионов, который приводил к большим пикам поглощения на длинах волн 1400, 950 и 725 нм. Путем уменьшения остаточного содержания OH-ионов в волокне (для одномодовых волокон — около 1 части на миллиард), в настоящее время ОВ имеют номинальные затухания 0,5 дБ/км в 1300 нм и 0,3 дБ/км в 1550 нм, как показано сплошной линией на рис. 4.9. Следует обратить внимание на центр примеси в районе 1480 нм, который является примесью OH-ионов в волокне. На этой длине волны всегда присутствует пик поглощения в кварцевом волокне.

Так называемые центры примеси, в зависимости от типа примеси, поглощают световую энергию на определенных, присущих данной примеси, длинах волн и рассеивают ее в виде тепловой энергии.

Собственное поглощение атомами оптического материала включает в себя:

поглощение электронов в ультрафиолетовой области;

поглощение электронов на границе инфракрасной области.

Ультрафиолетовая граница поглотительных полос электронов, в соответствии с законом Урбача, определяется как:

Излучатели электромагнитных колебаний 117

αуф = С eE/Eo,

где С и E0 — эмпирические постоянные, а E — энергия фотона.

Характерное распределение ультрафиолетового поглощения представлено на рис. 4.10.

Значение затухания в ультрафиолетовой области мало, по сравнению с затуханием в инфракрасной области, для малых значений энергии фотона. Собственные потери на поглощение возрастают при увеличении длины волны излучения и становятся значительными в ультрафиолетовой и инфракрасной областях. Так при длине волны излучения больше 1,6 мкм обычное кварцевое стекло теряет свойство прозрачности из-за роста потерь, которые связаны с инфракрасным поглощением (рис. 4.11).

Рис. 4.10. Распределение ультрафиолетового и инфракрасного поглощения

118 Глава 4. Каналы несанкционированного получения информации

Рис. 4.11. Сравнение инфракрасного поглощения, вызванного различными примесями

На рис. 4.12 представлена зависимость потерь от длины волны излучения для ОВ из кварцевого стекла с предельно малыми потерями и многокомпонентных ОВ, изготовленных из различных оптических материалов.

Рассеивание представляет собой процесс удаления части энергии из распространяющейсяволныспоследующейэмиссиейнекоторойчастиэтойэнергии.

Излучатели электромагнитных колебаний 119

Рис. 4.12. Зависимость потерь от длины волны для различных материалов

Источники возникновения рассеяния в ОВ:

маленькие газовые пузырьки;

неоднородный состав оптического материала;

изгиб ОВ.

Потери на рассеяние становятся определяющим фактором затухания в волокне уже в 1970 г., когда была достигнута чистота ОВ порядка 99,9999%.

Дальнейшему уменьшению затухания препятствовали потери на рассеяние. В общем виде потери на рассеяние определяются следующим выражением.

αрас = αРел + αМи + αΣизгиб + α + αВКР + αВРБМ

Здесь под αРел подразумеваются потери, обусловленные Релеевским рассеиванием. Причиной Релеевского рассеяния является то, что атомы в стекле (SiO2) имеют случайное пространственное распределение, и локальные изменения в составе приводят к локальному изменению индекса преломления, что и вызывает рассеяние оптической энергии. Поэтому волны малой длины должны больше рассеиваться и, следовательно, иметь более высокие потери, чем волны с большей длиной. αМи — потери, обусловленные Мирассеянием. Данный тип линейного рассеяния возникает на ионах примеси, размер которых сравним с длиной волны. В высококачественных ОВ такие потери отсутствуют.

αΣизгиб — суммарные потери, обусловленные микро- (αмикро) и макро- (αмакро) изгибами ОВ, определяются выражением:

αΣизгиб = αмикро + αмакро

120 Глава 4. Каналы несанкционированного получения информации

Микроизгибы возникают в процессе изготовления ОВ и при формировании пластикового конверта в процессе изготовления оптического кабеля. Макроизгибы возникают в процессе прокладки оптического кабеля и являются функцией от радиуса изгиба ОВ. Тогда потери на макроизгибах можно представить выражением:

αмакро = 2 αп.п. + αп.и.у. + αп.м.,

где αп.п.— потери, обусловленные переходами от прямого участка световода к изогнутому, а также от изогнутого к прямому участку; αп.и.у. — потери на изогнутом участке ОВ; αп.м. — потери, обусловленные наличием микротрещин.

αΣстык — суммарные потери, обусловленные стыковкой ОВ и определяемые внутренними (αвнутр.) и внешними (αвнеш.) потерями согласно выражения:

αΣстык = αвнутр. + αвнеш.

Внутренние потери определяются трудно контролируемыми факторами — парной вариацией диаметров сердцевин, показателей преломления, числовых апертур, эксцентриситетов “сердцевина — оболочка”, концентричностью сердцевины у соединяемых волокон. Можно получить случайные изменения перечисленных факторов, так как они зависят не от конструкции соединителя, а от технологии производства ОВ.

Причинами внешних потерь являются несовершенства конструкции соединителя, а также процесса сборки ОВ и соединителя. Внешние потери зависят от механической нестыковки (угловое, радиальное и осевое смещение), шероховатости на торце сердцевины, чистоты участка и наличия зазора между торцами стыкуемых ОВ. Наличие зазора приводит к появлению френелевского отражения из-за образования среды с показателем преломления, отличным от показателя преломления ОВ.

αвнеш. = αугл. + αрад. + αосевое + αобр.,

где αугл. — потери, вызванные угловым смещением световодов; αрад. — потери, вызван-

ные радиальным смещением осей ОВ; αосевое — потери, вызванные осевым смещением торцов ОВ; αобр. — потери, обусловленные обратным френелевским отражением.

Учитывая изложенное, выражение для αΣстык примет следующий вид:

αΣстык = αвнутр. + αугл. + αрад. + αосевое + αобр.

Суммарные потери, обусловленные стыковкой ОВ, также носят название вносимых потерь.

αВКР — потери, обусловленные вынужденным комбинационным рассеянием. Это рассеяние называется рассеянием Рамана-Мандельштама и возникает в волокне тогда, когда проходящая в нем оптическая мощность достигает некоторого порога. Порог рассеяния зависит от площади поперечного сечения и длины ОВ, а также от коэффициента потерь. Рассеяние распространяется преимущественно в направлении исходного излучения.

αВРБМ — потери, обусловленные вынужденным рассеянием МандельштамаБриллюэна. Физическая суть рассеяния состоит в том, что при достаточно высоком