Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Cycloaddition Reactions in Organic Synthesis

.pdf
Скачиваний:
82
Добавлен:
15.08.2013
Размер:
3.56 Mб
Скачать

Cycloaddition Reactions in Organic Synthesis.

Edited by S. Kobayashi and K. A. Jorgensen Copyright © 2001 Wiley-VCH Verlag GmbH ISBNs: 3-527-30159-3 (Hardcover); 3-527-60025-6 (Electronic)

Shu Kobayashi

Karl Anker Jørgensen (Eds.)

Cycloaddition Reactions

in Organic Synthesis

Cycloaddition Reactions in Organic Synthesis.

Edited by S. Kobayashi and K. A. Jorgensen

Copyright © 2001 Wiley-VCH Verlag GmbH

ISBNs: 3-527-30159-3 (Hardcover); 3-527-60025-6 (Electronic)

Related Titles from WILEY-VCH

Zaragoza Dörwald, F.

Organic Synthesis on Solid Phase.

Supports, Linkers, Reactions

2000. ISBN 3-527-29950-5

Yamamoto, H.

Lewis Acids in Organic Synthesis.

A Comprehensive Handbook in Two Volumes

2000. ISBN 3-527-29579-8

Rück-Braun, K. and Kunz, H.

Chiral Auxiliaries in Cycloadditions

1999. ISBN 3-527-29386-8

Gerbeleu, N. V., Arion, V. B. and Burgess, J.

Template Synthesis of Macrocyclic Compounds

1999. ISBN 3-527-29559-3

Cycloaddition Reactions in Organic Synthesis.

Edited by S. Kobayashi and K. A. Jorgensen

Copyright © 2001 Wiley-VCH Verlag GmbH

ISBNs: 3-527-30159-3 (Hardcover); 3-527-60025-6 (Electronic)

Cycloaddition Reactions in Organic Synthesis

Edited by

Shu Kobayashi and Karl Anker Jørgensen

Cycloaddition Reactions in Organic Synthesis.

Edited by S. Kobayashi and K. A. Jorgensen

Copyright © 2001 Wiley-VCH Verlag GmbH

ISBNs: 3-527-30159-3 (Hardcover); 3-527-60025-6 (Electronic)

Editors

 

This book was carefully produced. Nevertheless,

 

 

 

 

editors, authors and publisher do not warrant the

 

 

Kobayashi

 

information contained therein to be free of er-

Shu

 

Graduate School of Pharmaceutical Sciences

 

rors. Readers are advised to keep in mind that

University of Tokyo

 

statements, data, illustrations, procedural details

The Hongo, Bunkyo-Ku

 

or other items may inadvertently be inaccurate.

113-0033 Tokyo

 

 

Japan

 

 

Karl Anker Jørgensen

Department of Chemistry

Aarhus University

Langelandsgade 140

8000 Aarhus C

Denmark

Cover

The sculpture is made by the Danish

glass artist Tchai Munch.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data:

A catalogue record for this book is available from the British Library.

Die Deutsche Bibliothek – CIP-Cataloguing-in- Publication Data

A catalogue record for this publication is available from Die Deutsche Bibliothek

© WILEY-VCH Verlag GmbH

Weinheim (Germany), 2002

All rights reserved (including those of translation in other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

printed in the Federal Republic of Germany printed on acid-free paper

Typesetting K+V Fotosatz GmbH, Beerfelden Printing betz-druck GmbH, Darmstadt Bookbinding Wilhelm Osswald & Co., Neustadt

ISBN 3-527-30159-3

Cycloaddition Reactions in Organic Synthesis. V

Edited by S. Kobayashi and K. A. Jorgensen

Copyright © 2001 Wiley-VCH Verlag GmbH

ISBNs: 3-527-30159-3 (Hardcover); 3-527-60025-6 (Electronic)

Contents

List of Contributors XIII

Introduction 1

References 3

1

Catalytic Asymmetric Diels-Alder Reactions 5

 

Yujiro Hayashi

1.1Introduction 5

1.2

The Chiral Lewis Acid-catalyzed Diels-Alder Reaction 6

1.2.1The Asymmetric Diels-Alder Reaction of , -Unsaturated Aldehydes

as Dienophiles 6

1.2.1.1Aluminum 6

1.2.1.2Boron 6

1.2.1.3Titanium 18

1.2.1.4Iron 20

1.2.1.5Ruthenium 21

1.2.1.6Chromium 21

1.2.1.7Copper 21

1.2.2The Asymmetric Diels-Alder Reaction of , -Unsaturated Esters as Dienophiles 23

1.2.3The Asymmetric Diels-Alder Reaction

of 3-Alkenoyl-1,3-oxazolidin-2-ones as Dienophiles 24

1.2.3.1Aluminum 26

1.2.3.2Magnesium 26

1.2.3.3Copper 27

1.2.3.4Iron 34

1.2.3.5Nickel 34

1.2.3.6Titanium 36

1.2.3.7Zirconium 40

1.2.3.8Lanthanides 40

1.2.4

The Asymmetric Diels-Alder Reaction of Other Dienophiles 43

1.3

The Asymmetric Catalytic Diels-Alder Reaction Catalyzed by Base 46

1.4

Conclusions 48

VI Contents

1.5Appendix 48 Acknowledgment 53

References 53

2Recent Advances in Palladium-catalyzed Cycloadditions

Involving Trimethylenemethane and its Analogs 57

Dominic M. T. Chan

2.1General Introduction 57

2.2

Mechanism for [3+2] Carbocyclic Cycloaddition 58

2.3

Dynamic Behavior of TMM-Pd Complexes 59

2.4

Application in Organic Synthesis 60

2.4.1General Comment 60

2.4.2[3+2] Cycloaddition: The Parent TMM

2.4.2.1

Recent Applications in Natural and Unnatural Product Synthesis 61

2.4.2.2

Novel Substrates for TMM Cycloaddition 61

2.4.3

[3+2] Cycloaddition: Substituted TMM 63

2.4.3.1Cyclopropyl-substituted TMM 63

2.4.3.2Phenylthio-TMM 64

2.4.4

[3+2] Cycloaddition: Intramolecular Versions 64

2.4.4.1

Introduction and Substrate Synthesis

64

2.4.4.2

Synthesis of Bicyclo[3.3.0]octyl Systems

65

2.4.4.3

Synthesis of Bicyclo[4.3.0]nonyl Systems 66

2.4.4.4

Synthesis of Bicyclo[5.3.0]decyl Systems

67

2.4.5Carboxylative Cycloadditions 67

2.4.6Carbonyl Cycloadditions 71

2.4.6.1Addition to Aldehydes 71

2.4.6.2Addition to Ketones 72

2.4.7Imine Cycloadditions 73

2.4.8[4+3] Cycloadditions 76

2.4.9[6+3] Cycloadditions 80

2.4.10[3+3] Cycloaddition 82

2.5Conclusions 83

References 83

3Enantioselective [2+1] Cycloaddition: Cyclopropanation with Zinc Carbenoids 85

Scott E. Denmark and Gregory Beutner

3.1Introduction 85

3.2

The Simmons-Smith Cyclopropanation – Historical Background 87

3.3

Structure and Dynamic Behavior of Zinc Carbenoids 90

3.3.1

Formation and Analysis of Zinc Carbenoids 90

3.3.2

Studies on the Schlenk Equilibrium for Zinc Carbenoids 93

3.4Stereoselective Simmons-Smith Cyclopropanations 100

3.4.1Substrate-directed Reactions 100

3.4.2Auxiliary-directed Reactions 108

Contents VII

3.4.2.1Chiral Ketals 108

3.4.2.2Chiral Vinyl Ethers 111

3.4.3In-situ Chiral Modification 115

3.4.3.1Chirally Modified Reagents 115

3.4.3.2Chirally Modified Substrates 118

3.4.4Asymmetric Catalysis 121

3.4.4.1General Considerations 121

3.4.4.2Initial Discoveries 122

3.4.4.3

Defining the Role of Reaction Protocol 127

3.5

Simmons-Smith Cyclopropanations – Theoretical Investigations 140

3.6

Conclusions and Future Outlook 146

 

References 147

4

Catalytic Enantioselective Cycloaddition Reactions

 

of Carbonyl Compounds 151

 

Karl Anker Jørgensen

4.1Introduction 151

4.2

Activation of Carbonyl Compounds by Chiral Lewis Acids 151

4.2.1The Basic Mechanisms of Cycloaddition Reactions

 

of Carbonyl Compounds with Conjugated Dienes

152

4.3

Cycloaddition Reactions of Carbonyl Compounds

156

4.3.1

Reactions of Unactivated Aldehydes 156

 

 

4.3.1.1

Chiral Aluminum and Boron Complexes

156

 

4.3.1.2

Chiral Transitionand Lanthanide-metal Complexes 160

4.3.2

Reactions of Activated Aldehydes 164

 

 

4.3.2.1

Chiral Aluminum and Boron Complexes

164

 

4.3.3Reactions of Ketones 174

4.3.4Inverse Electron-demand Reactions 178

4.4Summary 182 Acknowledgment 183

References 183

5

Catalytic Enantioselective Aza Diels-Alder Reactions 187

 

 

 

Kobayashi

 

Shu

5.1Introduction 187

5.2

Aza Diels-Alder Reactions of Azadienes 188

5.3

Aza Diels-Alder Reactions of Azadienophiles 191

5.4

A Switch of Enantiofacial Selectivity 195

5.5Chiral Catalyst Optimization 198

5.6

Aza Diels-Alder Reactions of -Imino Esters with Dienes 203

5.7

Aza Diels-Alder Reactions of 2-Azadienes 205

5.8Perspective 207 References 207

VIII

Contents

 

 

 

 

6

Asymmetric Metal-catalyzed 1,3-Dipolar Cycloaddition Reactions 211

 

 

Kurt Vesterager Gothelf

6.1Introduction 211

6.2

Basic Aspects of Metal-catalyzed 1,3-Dipolar Cycloaddition Reactions 212

6.2.1The 1,3-Dipoles 212

6.2.2

Frontier Molecular Orbital Interactions 213

 

6.2.3

The Selectivities of 1,3-Dipolar Cycloaddition Reactions 216

6.3

Boron Catalysts for Reactions of Nitrones

218

 

6.4

Aluminum Catalysts for Reactions of Nitrones

219

6.5

Magnesium Catalysts for Reactions of Nitrones

224

6.6

Titanium Catalysts for Reactions of Nitrones and Diazoalkanes 226

6.7

Nickel Catalysts for Reactions of Nitrones

232

 

6.8

Copper Catalysts for Reactions of Nitrones

233

6.9

Zinc Catalysts for Reactions of Nitrones and Nitrile Oxides 235

6.10

Palladium Catalysts for Reactions of Nitrones

237

6.11

Lanthanide Catalysts for Reactions of Nitrones

239

6.12Cobalt, Manganese, and Silver Catalysts for Reactions of Azomethine

 

Ylides 240

6.13

Rhodium Catalysts for Reactions of Carbonyl Ylides 242

6.14Conclusion 244

Acknowledgment 245

References 245

7Aqua Complex Lewis Acid Catalysts

for Asymmetric 3+2 Cycloaddition Reactions 249

Shuji Kanemasa

7.1Introduction 249

7.2DBFOX/Ph-Transition Metal Complexes

 

and Diels-Alder Reactions 250

7.2.1

Preparation and Structure of the Catalysts 250

7.2.2Diels-Alder Reactions 252

7.2.3

Structure of the Substrate Complexes 255

7.2.4

Tolerance of the Catalysts 259

7.2.5Nonlinear Effect 260

7.3

Nitrone and Nitronate Cycloadditions 268

7.3.1Nickel(II) Complex-catalyzed Reactions 268

7.3.2

Role of MS 4 Å 270

7.3.3Nitronate Cycloadditions 272

7.3.4

Reactions of Monodentate Dipolarophiles 274

7.3.5Transition Structures 276

7.4Diazo Cycloadditions 278

7.4.1

Screening of Lewis Acid Catalysts 279

7.4.2

Zinc Complex-catalyzed Asymmetric Reactions 281

7.4.3Transition Structures 283

7.5 Conjugate Additions 285

Contents IX

7.5.1Thiol Conjugate Additions 285

7.5.2Hydroxylamine Conjugate Additions 288

7.5.3

Michael Additions of Carbon Nucleophiles 291

7.6Conclusion 294

References 295

8

Theoretical Calculations of Metal-catalyzed Cycloaddition Reactions 301

 

Karl Anker Jørgensen

8.1Introduction 301

8.2Carbo-Diels-Alder Reactions 302

8.2.1Frontier-molecular-orbital Interactions

for Carbo-Diels-Alder Reactions 302

8.2.2Activation of the Dienophile by Lewis Acids, Interactions,

Reaction Course, and Transition-state Structures 303

8.3Hetero-Diels-Alder Reactions 314

8.3.1Frontier-molecular-orbital Interactions

 

for Hetero-Diels-Alder Reactions 314

 

8.3.2

Normal Electron-demand Hetero-Diels-Alder Reactions

315

8.3.3

Inverse Electron-demand Hetero-Diels-Alder Reactions

319

8.4

1,3-Dipolar Cycloaddition Reactions of Nitrones 321

 

8.4.1Frontier-orbital Interactions for 1,3-Dipolar Cycloaddition Reactions of Nitrones 321

8.4.2Normal Electron-demand Reactions 322

8.4.3Inverse Electron-demand Reactions 323

8.5Summary 326 Acknowledgment 326 References 326

Index 329

Cycloaddition Reactions in Organic Synthesis. XI

Edited by S. Kobayashi and K. A. Jorgensen

Copyright © 2001 Wiley-VCH Verlag GmbH

ISBNs: 3-527-30159-3 (Hardcover); 3-527-60025-6 (Electronic)

List of Contributors

Gregory Beutner

Kurt Vesterager Gothelf

Department of Chemistry

Center for Metal Catalyzed Reactions

University of Illinois

Department of Chemistry

245 Roger Adams Laboratory

Aarhus University

PO Box 18

8000 Aarhus C

600 S. Mathews Avenue

Denmark

Urbana, IL 61801

Karl Anker Jørgensen

USA

Center for Metal Catalyzed Reactions

 

Dominic M. T. Chan

Department of Chemistry

DuPont Crop Protection

Aarhus University

Stine-Haskell Research Center

8000 Aarhus C

PO Box 30

Denmark

Newark, DE 19714

Email:

USA

kaj@chem.au.dk

Email:

Fax: +45-86-19-6188

dominic.m.chan@usa.dupont.com

Yujiro Hayashi

Fax: +01-302-366-5738

Department of Industrial Chemistry

 

Scott E. Denmark

Faculty of Engineering

245 Roger Adams Laboratory

Science University of Tokyo

Department of Chemistry

Kagurazaka 1–3, Shinjuku-ku

University of Illinois

Tokyo 162-8601

PO Box 18

Japan

600 S. Mathews Avenue

Email: hayashi@ci.kagu.sut.ac.jp

Urbana, IL 61801

 

USA

 

Email: sdenmark@uiuc.edu

 

Fax: +01-217-333-3984