Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Astruc D. - Modern arene chemistry (2002)(en)

.pdf
Скачиваний:
73
Добавлен:
15.08.2013
Размер:
17.3 Mб
Скачать

Edited by Didier Astruc

Modern Arene Chemistry

Modern Arene Chemistry. Edited by Didier Astruc

Copyright 8 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 3-527-30489-4

Related Titles from WILEY-VCH

S. Kobayashi, K. A. Jørgensen (Eds.)

Cycloaddition Reactions in Organic Synthesis

XII, 332 pages

2001

Hardcover

ISBN 3-527-30159-3

N. Krause (Ed.)

Modern Organocopper Chemistry

XIV, 373 pages

2002

Hardcover

ISBN 3-527-29773-1

A. Ricci (Ed.)

Modern Amination Methods

XVIII, 267 pages

2000

Hardcover

ISBN 3-527-29976-9

F. Vo€gtle, J. F. Stoddart, M. Shibasaki (Eds.)

Stimulating Concepts in Chemistry

XVII, 396 pages

2000

Hardcover

ISBN 3-527-29978-5

Modern Arene Chemistry

Edited by Didier Astruc

Editor

Prof. Didier Astruc

LCOO, UMR CNRS No 5802 Universite´ Bordeaux I 33405 Talence Cedex

France

9This book was carefully produced. Nevertheless, editor, authors and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

A catalogue record for this book is available from the British Library.

Die Deutsche Bibliothek – CIP Cataloguing-in- Publication-Data

A catalogue record for this publication is available from Die Deutsche Bibliothek

( 2002 Wiley-VCH Verlag GmbH & KGaA, Weinheim

All rights reserved (including those of translation in other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not

specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany. Printed on acid-free paper.

Typesetting Asco Typesetters, Hong Kong Printing Strauss O setdruck GmbH, Mo¨rlenbach Bookbinding J. Scha¨ er GmbH & Co. KG, Gru¨nstadt

ISBN 3-527-30489-4

v

Contents

List of Contributors xvi

Arene Chemistry : From Historical Notes to the State of the Art 1

Didier Astruc

The History of Benzene

1

The History of Aromaticity

5

Some Key Trends Towards Modern Arene Chemistry 9

Aromatic Chemistry: From the 19th Century Industry to the State of the Art 11

Organization of the Book and Content 13 References 16

1The Synthesis of Tris-Annulated Benzenes by Aldol Trimerization of Cyclic Ketones 20

Margaret M. Boorum and Lawrence T. Scott

Abstract 20

1.1Introduction 20

1.2

Truxene and Truxone: Venerable Prototypes 21

1.3

Other Examples 23

1.4Limitations 27

1.4.1

Experimental Observations and a Working Hypothesis 27

1.4.2

Guidance from Calculations 29

1.5Conclusions 30 References 31

2Oligounsaturated Five-Membered Carbocycles – Aromatic and Antiaromatic

Compounds in the Same Family 32

Rainer Haag and Armin de Meijere

Abstract 32

2.1Introduction 32

2.2

Cyclopentadienyl Cations 33

2.3

Fulvene and Spiroannelated Cyclopentadiene Derivatives 37

vi

Contents

 

 

 

 

Polyunsaturated Di-, Tri-, and Oligoquinanes 38

2.4

2.4.1

Pentalene, Pentalenediide, and Pentalene Metal Complexes 39

2.4.2

Acepentalene, Acepentalenediide, and Acepentalene Metal Complexes 42

2.4.3

Generation of C20-Fullerene 44

 

 

References

50

3

The Suzuki Reaction with Arylboron Compounds in Arene Chemistry 53

 

 

Akira Suzuki

 

 

Abstract

53

3.1Introduction 53

3.2

Reactions with Aryl Halides and Triflates: Synthesis of Biaryls 54

3.2.1

Aromatic–Aromatic Coupling 54

3.2.2

Aromatic–Heteroaromatic and Heteroaromatic–Heteroaromatic Couplings 65

3.2.3Coupling of Arylboron Compounds Bearing Sterically Bulky or Electron-

 

Withdrawing Substituents 76

3.2.4

Modified Catalysts and Ligands 80

3.2.5

Solid-Phase Synthesis (Combinatorial Methodology) 84

3.3

Reactions with 1-Alkenyl Halides and Triflates 88

3.4

Reactions with Aryl Chlorides and Other Organic Electrophiles 93

3.5Miscellaneous 98

3.6

Applications in Polymer Chemistry 99

 

References

102

4

Palladium-Catalyzed Amination of Aryl Halides and Sulfonates 107

 

John F. Hartwig

 

Abstract

107

4.1Introduction 107

4.1.1

Synthetic Considerations 107

4.1.2Prior CaX Bond-Forming Coupling Chemistry Related to the Amination of Aryl

 

Halides 108

4.1.3

Novel Organometallic Chemistry 109

4.1.4

Organization of the Review 109

4.2Background 110

4.2.1

Early Palladium-Catalyzed Amination

110

4.2.2

Initial Synthetic Problems to be Solved

111

4.3Palladium-Catalyzed Amination of Aryl Halides with Amine Substrates 111

4.3.1

Early Work 111

 

 

4.3.1.1

Initial Intermolecular Tin-Free Aminations of Aryl Halides 111

4.3.1.2

Initial Intramolecular Amination of Aryl Halides

112

4.3.2

Second Generation Catalysts: Aryl Bis-phosphines

112

4.3.2.1

Amination of Aryl Halides

112

 

4.3.2.2

Amination of Aryl Triflates

115

 

4.3.2.3

Amination of Heteroaromatic Halides 116

 

4.3.2.4

Aminations of Solid-Supported Aryl Halides 119

 

Contents vii

4.3.2.5

Amination of Polyhalogenated Aromatic Substrates

119

 

4.3.3

Third-Generation Catalysts with Alkylmonophosphines 119

 

4.3.3.1

High-Temperature Aminations Involving P(tBu)3 as Ligand

120

4.3.3.2

Use of Sterically Hindered Bis(phosphine) Ligands

120

 

4.3.3.3

P,N Ligands and Dialkylphosphinobiaryl Ligands

121

 

4.3.3.4

Phenyl Backbone-Derived P,O Ligands 123

 

 

4.3.3.5

Low-Temperature Reactions Employing P(tBu)3 as a Ligand

124

4.3.3.6

Heterocyclic Carbenes as Ligands 124

 

 

4.3.3.7

Phosphine Oxide Ligands

128

 

 

4.3.4

Heterogeneous Catalysts

129

 

 

4.4Aromatic CaN Bond Formation with Non-Amine Substrates and Ammonia Surrogates 129

4.4.1

Amides, Sulfonamides, and Carbamates

130

4.4.2

Allylamine as an Ammonia Surrogate

131

4.4.3Imines 132

4.4.4

Protected Hydrazines 132

4.4.5Azoles 133

4.5

Amination of Base-Sensitive Aryl Halides

135

 

4.6

Applications of the Amination Chemistry

136

 

4.6.1

Synthesis of Biologically Active Molecules

136

 

4.6.1.1

Arylation of Secondary Alkylamines

136

 

 

4.6.1.2

Arylation of Primary Alkylamines

138

 

 

4.6.2

Applications in Materials Science

141

 

 

4.6.2.1

Polymer Synthesis 141

 

 

 

4.6.2.2

Synthesis of Discrete Oligomers 143

 

 

4.6.2.3

Synthesis of Azacyclophanes 146

 

 

 

4.6.2.4

Synthesis of Small Molecules for Materials Applications 146

4.6.3

Palladium-Catalyzed Amination in Ligand Synthesis

147

4.7

Mechanism of Aryl Halide Amination and Etheration

149

4.7.1Oxidative Addition of Aryl Halides to L2Pd Complexes (L ¼ P(o-tolyl)3, BINAP,

 

DPPF) and its Mechanism 149

 

4.7.2

Formation of Amido Intermediates 151

 

4.7.2.1

Mechanism of Palladium Amide Formation from Amines 151

4.7.3

Reductive Eliminations of Amines from Pd(II) Amido Complexes 152

4.7.4

Competing b-Hydrogen Elimination from Amido Complexes

155

4.7.5

Selectivity: Reductive Elimination vs. b-Hydrogen Elimination

156

4.7.6

Overall Catalytic Cycle with Specific Intermediates 158

 

4.7.6.1Mechanism for Amination Catalyzed by P(o-C6H4Me)3 Palladium Complexes 158

4.7.6.2Mechanism for Amination Catalyzed by Palladium Complexes with Chelating Ligands 159

4.7.6.3Mechanism of Amination Catalyzed by Palladium Complexes with Sterically

Hindered Alkyl Monophosphines 160

4.8Summary 160 References 161

viii

Contents

 

 

 

From Acetylenes to Aromatics: Novel Routes – Novel Products 169

5

 

 

Henning Hopf

 

 

Abstract 169

5.1Introduction 169

5.2The Aromatization of Hexa-1,3-dien-5-yne to Benzene: Mechanism and

Preparative Applications 171

5.3The Construction of Extended Aromatic Systems from Ethynyl Benzene Derivatives 177

5.4

Bridged Aromatic Hydrocarbons Containing Triple Bonds (Cyclophynes) 187

 

References 192

6Functional Conjugated Materials for Optonics and Electronics by Tetraethynylethene

Molecular Scaffolding 196

Mogens Brøndsted Nielsen and Francois Diederich

Abstract 196

6.1Introduction 196

6.2

Arylated Tetraethynylethenes

198

 

 

 

6.2.1

Nonlinear Optical Properties

198

 

 

 

6.2.2

Photochemically Controlled cis–trans Isomerization: Molecular Switches 199

6.2.3

Electrochemically Controlled cis–trans Isomerization

201

 

6.3

Tetraethynylethene Dimers

202

 

 

 

6.4

Two-Dimensional Sca olding: Expanded Carbon Cores

204

 

6.4.1

Perethynylated Dehydroannulenes

204

 

 

6.4.2

Perethynylated Expanded Radialenes

205

 

 

6.4.3

Cyclic Platinum s-Acetylide Complex of Tetraethynylethene

208

6.5

Linearly p-Conjugated Oligomers and Polymers: Poly(triacetylene)s 209

6.5.1

Lateral Aryl Substitution

210

 

 

 

6.5.2

Aromatic Spacer Units

210

 

 

 

 

6.5.3

Donor–Donor and Acceptor–Acceptor End-Functionalization

212

6.6Conclusions 212 Abbreviations 213

References 213

7The ADIMET Reaction: Synthesis and Properties of Poly(dialkylparaphenyleneethynylene)s 217

Uwe H. F. Bunz

Abstract 217

7.1Introduction 217

7.1.1

Scope and Coverage of this Review 217

7.1.2

Historical Perspective 217

7.2Syntheses 220

7.2.1PPEs by Acyclic Diyne Metathesis (ADIMET) Utilizing Schrock’s Tungsten

 

Carbyne Complex 220

7.2.2

Synthesis of Diarylalkynes Utilizing the Mori System 221

Contents ix

7.2.3Cycles 223

7.2.4

Alkyne-Bridged Polymers by ADIMET

225

7.3

Reactivities of PPEs 229

 

7.4

Solid-State Structures and Liquid-Crystalline Properties of the PPEs 231

7.4.1

Organometallic Poly(aryleneethynylene)s

231

7.4.2Poly(dialkylparaphenyleneethynylene)s 233

7.5

Spectroscopic Properties of Dialkyl-PPEs 235

7.5.1

UV/vis Spectroscopy of Dialkyl-PPEs 237

7.5.2

Fluorescence Spectroscopy: The Excited State Story 240

7.6Self-Assembly of PPEs on Surfaces: From Jammed Gel Phases to Nanocables

 

and Nanowires 242

7.7

PPE-Based Organic Light-Emitting Diodes (OLEDs) 244

7.8

Conclusions and Outlook 245

 

References 247

8The Chromium-Templated Carbene Benzannulation Approach to Densely

Functionalized Arenes (Do¨tz Reaction) 250

Karl Heinz Do¨tz and Joachim Stendel jr.

Abstract 250

8.1Introduction 250

8.2

Mechanism and Chemoselectivity of the Benzannulation 253

8.2.1Mechanism 253

8.2.2Chemoselectivity 255

8.3

Scope and Limitations

257

8.3.1

The Carbene Complex

257

8.3.1.1Availability 257

8.3.1.2

The Carbene Ligand 259

8.3.1.3

The Chromium Template 263

8.3.2

The Alkyne 264

8.3.3Regioselectivity 265

8.3.4Diastereoselectivity 269

8.3.5

Thermal and Photochemical Benzannulation 271

8.3.6

Subsequent Transformations

271

8.4

Typical Experimental Procedure 272

8.5

Synthesis of Specific Arenes

273

8.5.1Biaryls 273

8.5.2Cyclophanes 275

8.5.3

Annulenes and Dendritic Molecules 278

8.5.4

Angular, Linear, and Other Fused Polycyclic Arenes 279

8.5.5

Fused Heterocycles 283

8.6

Synthesis of Biologically Active Compounds 285

8.6.1Vitamins 285

8.6.2Antibiotics 286

8.6.3Steroids 289

xContents

8.6.4Alkaloids 290

8.7

Summary and Outlook 291

 

References

292

9

Osmiumand Rhenium-Mediated Dearomatization Reactions with Arenes 297

 

Mark T. Valahovic, Joseph M. Keane, and W. Dean Harman

 

Abstract

297

9.1Introduction 297

9.2

{Os(NH3Þ5}– The Pentaammineosmium(II) Fragment 298

9.2.1

Preparation of h2-Arene Complexes 298

9.2.2

Binding Selectivity 298

9.2.3Hydrogenations 299

9.2.4

Benzene and Alkylated Benzenes 300

9.2.4.1Benzene 300

9.2.4.2Toluene 301

9.2.4.3Xylenes 302

9.2.5Naphthalene 302

9.2.5.1 Tandem Addition Reactions 303

9.2.5.2Cyclizations 304

9.2.6Anisole 306

9.2.6.1 Electrophilic Substitutions 306

9.2.6.2 Tandem Additions 306

9.2.6.3 Cyclization Reactions 310

9.2.7Aniline 315

9.2.7.1

Electrophilic substitution 315

 

9.2.7.2

4H-Anilinium Michael Additions

316

9.2.7.3

Electrophilic Addition Reactions

318

9.2.7.4

Michael–Michael–Michael Ring-Closure 318

9.2.8Phenol 318

9.2.8.1

Electrophilic Substitution Reactions 318

9.2.8.2

Michael Addition Reactions 320

9.2.8.3

o-Quinone Methide Complexes 323

9.3{TpRe(CO)(L)} 323

9.3.1Introduction 323

9.3.2

Preparation of h2-Arene Complexes 324

9.3.3

Quadrant Analysis 324

9.3.4Naphthalene 324

9.3.5Cycloadditions 326

9.4

Concluding Remarks

328

 

References

328

 

10

The Directed ortho Metalation Reaction – A Point of Departure for New Synthetic

 

Aromatic Chemistry

330

 

Christian G. Hartung and Victor Snieckus

 

Abstract

330