Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

De Cuyper M., Bulte J.W.M. - Physics and chemistry basis of biotechnology (Vol. 7) (2002)(en)

.pdf
Скачиваний:
33
Добавлен:
15.08.2013
Размер:
2.79 Mб
Скачать

L.Henry Bryant, Jr. and Jeff W.M. Bulte

16.Forier, B. and Dehaen, W. (1 999) Alternative convergent and accelerated double-stage convergent approaches towards functionalised dendritic pol yethers, Tetrahedron 55,9829-9846.

17.Hawker, C.J. and Fréchet, J.M.J. (1992) Unusual macromolecular architectures: the convergent growth approach to dendritic polyesters and novel block copolymers, J Am Chem SOC 114, 84058413.

18.Naylor, A.M., Goddard III, W.A., Kiefer, G.E., and Toinalia, D.A. (1989) Starburst dendrimers. 5. Molecular shape control., J Am Chem SOC 111, 2339-2341,

19.Karakaya, B., Claussen, W., Gessler, K., Saenger, W., and Schulter, A.-D. (1997) Toward dendrimers with cylindrical shape in solution, J Am Chem Soc 119, 3296-3301.

20.Stoddart, F.J. and Welton, T. (1999) Metal-containing dendritic polymers, Polyhedron 18, 35753591.

21.Venturi, M., Serroni, S., Juris, A., Campagna, S.. and Balzani, V. (1998) Electrochemical and photochemical properties of metal-containing dendrimers, Top Curr Chem 197, 193-228.

22.Constable, E.C. (1997) Metallodendrimers: metal ions as supramolecular glue, Chem Commun, 10731080.

23.Serroni, S., Denti, G., Campagna, S., Juris, A,, Ciano, M., and Balzani, V. (1992) Arborols based on luminescent and redox-active transition metal complexes, Angew Chem In? Edit 31, 1493-1495.

24.Achar, S., Immoos, C.E., Hill, M.G., and Catalano, V.J. (1997) Synthesis, characterisation, and electrochemistry of heterometallic dendrimers, lnorg Chem 36, 23 14-2320.

25.Balzani, V., Campagna, S., Denti, G., Juris, A,, Serroni, S., and Venturi, M. (1995) Harvesting sunlight by artificial supramolecular antennae, Sol Energ Mat Sol C 38, 159-173.

26.Balzani, V., Campagna, S., Denti, G., Juris, A., Serroni, S., and Venturi, M. (1994) Bottom-up strategy to obtain luminescent and redox-active metal complexes of nanometric dimensions, Coordin Chem Rev 132, 1-13.

27.Gorman, C.B., Smith, J.C., Hager, M.W., Parhurst, B.L., Sierzputowska-Gracz, H., and Haney, C.A. (1999) Molecular structure-property relationships for electron-transfer rate attenuation in redoxactive core dendrimers, J Am Chem Soc 121, 9958-9966.

28.PrevBtC, D., Caminade, A.-M., and Majoral, J.-P. (1 997) Phosphate-, phosphite-, ylide-, and phosphonate-terminated dendrimers, J Org Chem 62, 4834-4841.

29.Majoral, J.-P. and Caminade, A.-M. (1998) Divergent approaches to phosphorus-containing dendrimers and their functionalisation, Topp Curr Cheni 197, 79-124.

30.Caminade, A.-M., Slany, M., Launay, N., Lartigue: M.-L., and Majoral, J.-P. (1996) Phosphorus dendrimers: a new class of macromolecules, Phosphorus Sulfur 110, 517-520.

3 1, Launay, N., Slany, M., Caminade, A.-M., and Majoral, J.-P. (1996) Phosphorus-containing dendrimers. Easy access to new multi-difunctionalised macromolecules, J Org Chem 61, 3799-3805.

32.Serroni, S., Juris, A., Venturi, M., Campagna, S., Resino, I.R., Denti, G., Credi, A., and Balzani, V. (1997) Polynuclear metal complexes of nanometer size. A versatile synthetic strategy leading to luminescent and redox-active dendrimers made of an osmium(II)-based core and ruthenium(II)-based units in the branches, J Mater Chem 7, 1227-1236.

33.Veith, M., ElsäBser, R., and Krüger, R.-P. (1999) Synthesis of dendrimers with a N-Si-C framework,

Organometallics 18, 656-661,

34.Alonso, B., Cuadrado, I., Morán, M., and Losada, J. (1994) Organometallic silicon dendrimers, J

Chem Soc Chem Comm, 2575-2576.

35.van der Made, A.W. and van Leeuwen, P.W.N.M. (1992) Silane dendrimers, J Chem Soc Chem Comm, 1400-1401.

36.Krska, S.W. and Seyferth, D. (1998) Synthesis of water-soluble carbosilane dendrimers, J Am Chem SOC 120,3604-3612.

37.Gossage, R.A., Muiloz-Martinez, E., Frey, H., Burgath. A,, Lutz, M., Spek, A.L., and van Koten, G. (1999) A novel phenol for use in convergent and divergent dendrimer synthesis: access to core fuctionalisable trifurcate carbosilane dendrimers-the x-ray crystal structure of [1 ,3,5-tris{4- (triallylsilyl)phenylester]benzene], Chem-Eur J 5, 2 19 1-2 197.

38.Huc, V., Boussaguet, P., and Mazerolles, P. (1996) Organogermanium dendrimers, J Organomet Chem 521,253-260.

64

Dendrimers: Chemical principles and biotechnology applications

39.Balzani, V., Campagna, S., Denti, G., Juris. A,, Serroni, S., and Venturi, M. (1998) Designing dendrimers based on transition-metal complexes. Light-harvesting properties and predetermined redox patterns, Accounts Chem Res 31, 26-34.

40.Wells, N.J., Basso, A., and Bradley, M. (1998) Solid-phase dendrimer synthesis, Biopolymers 47, 381-396.

41.Kim, R.M., Manna, M., Hutchins, S.M., Griffin. P.R., Yates, N.A., Bernick, A.M., and Chapman, K.T. (1996) Dendrimer-supported combinatorial chemistry, P Natl Acad Sci USA 93, 10012-10017.

42.Newkome, G.R., Childs, B.J., Rourk, M.J., Baker, G.R.. and Moorefield, C.N. (1999) Dendrimer construction and macromolecular property moditication via combinatorial methods, Biotechnol

Bioeng 6, 243-253.

43.Maxwell, B.D., Fujiwara. H., Habibi-Goudarzi, S.. Ortiz. J.P., and Logusch, S.J. (1998) Preparation of [14C]G2.5 and [[14C]G5.5 Starburst ® PAMAM dendrimers: the first example of dendrimer radiosynthesis, Comp Rad 41, 935-939.

44.Zeng, F. and Zimmerman, S.C. (1996) Rapid synthesis of dendrimers by an orthogonal coupling strategy, J Am Chem Soc 118, 5326-5327.

45.Lapierre, J.-M., Skobridis, K., and Seebach, D. (1993) 173. Preparation of chiral building blocks for starburst dendrimer synthesis, Helv Chim Acta 76. 24 19-2432.

46.Chechik, V., Zhao, M., and Crooks, R.M. (1999) Self-assembled inverted micelles prepared from a

dendrimer template: phase transfer ofencapsulated guests, J Am Chem Soc 121, 4910-491 1.

47, Frey, H., Lach, C., and Lorenz, K. (1998) Heteroatom-based dendrimers, Adv Mater 10, 279-293.

48.Roovers, J. and Comanita, B. (1999) Dendrimers and dendrinier-polymer hybrids, Adv Polym Sci 142; 179-228.

49.Scherrenberg, R., Coussens: B., van Vliet. P., Edouard. G., Brackman, J., de Brabander, E., and Mortensen, K. (1998) The molecular characteristics of poly(propyleneimine) dendrimers as studied with small-angle neutron scattering, viscosimetry, and molecular dynamics, Macromolecules 31,

456-461.

50, Frechet, J.M.J., Hawker, C.J., Gitsov, I., and Leon, J.W. (1996) Dendrimers and hyperbranched polymers: two families of three-dimensional macromolecules with similar but clearly distinct properties, Pure Appl Chem A33, 1399-1425.

51.Wooley, K.L., Frechet, J.M.J., and Hawker. C.J. (1994) Influence of shape on the reactivity and properties of dendritic, hyperbranched and linear aromatic polyesters, Polymer 35, 4489-4495.

52.Newkome, G.R., Weis, C.D., Moorefield, C.N.. and Weis, I. (1997) Detection and functionalisation of dendrimers possessing free carboxylic acid moieties, Macromolecules 30, 2300-2304.

53.Sahota, H.S., Lloyd, P.M., Yeates, S.G., Derrick, P.J.. Taylor, P.C., and Haddleton, D.M. (1994) Characterisation of aromatic polyester dendrimers by matrix-assisted laser desorption ionisation mass spectrometry, J Chem Soc Chem Comm. 2445-2446.

54.Percec, V., Cho, W.-D., Mosier, P.E., Ungar, G., and Yeardley, D.J.P. (1998) Structural analysis of cylindrical and spherical supramolecular dendrimers quantifies the concept of monodendron shape control by generation number, J Am Chem Soc 120. 11061-11070.

55.Topp, A,, Bauer, B.J., Klimash, J.W., Spindler, R.. Tomalia, D.A., and Amis, E.J. (1999) Probing the location of the terminal groups of dendrimers in dilute solution, Macromolecules 32, 7226-723 1.

56.Meltzer, A.D., Tirrell, D.A., Jones, A.A., Ingletield, P.T., Hedstrand, D.M., and Tomalia, D.A. (1992) Chain dynamics in poly(amido amine) dendrimers. A study of C13 NMR relaxation parameters, Macromolecules 25, 454 1-4548.

57.Gorman, C.B., Hager, M.W., Parkhurst, B.L., and Smith, J.C. (1998) Use of a paramagnetic core to affect longitudinal nuclear relaxation in dendrimers-a tool for probing dendrimer conformation,

Macromolecules 31, 815-822.

58.Hofiens, J.H., Verheijen, W., Shukla, R., Dehaen. W., and De Schryver, F.C. (1998) Detection of a single dendrimer macromolecule with a fluorescent dihydropyrrolopyrroledione (DPP) core embedded in a thin polystyrene polymer film, Macromolecules 31, 4493-4497.

59.Jockusch, S., Ramirez, J., Sanghvi, K., Nociti, R., Turro, N.J., and Tomalia, D.A. (1999) Comparison of nitrogen core and ethylenediamine core starburst dendrimers through photochemical and spectroscopic probes, Macromolecules 32, 44 19-4423.

60.Pistolis, G., Malliaris, A,, Paleos, C.M., and Tsiourvas. D. (1997) Study of poly(amidoamine) starburst dendrimers by fluorescence probing, Longmuir 13, 5870-5875.

65

L.Henry Bryant, Jr. and Jeff W.M. Bulte

61.Demathieu, C., Chehimi, M.M., Lipskier, J.-F., Caminade, A,-M., and Majoral, J.-P. (1999) Characterisation of dendrimers by X-ray photoelectron spectroscopy, Appl Spectrosc 53, 1277-1281,

62.Taddia, M., Lucano, C., and Juris, A. (1 998) Analytical characterisation of supramolecular speciesdetermination of ruthenium and osmium in dendrimers by electrothermal atomic absorption spectrometry, Anal Chim Acta 375,285-292.

63.Hermann, B.A., Hubler, U., Jess, P., Lang, H.P., Guntherodt, H.-J., Greiveldinger, G., Rheiner, P.B., Murer, P., Sifferlen, T., and Seebach, D. (1999) Chiral dendrimers on a Pt(100) surface investigated by scanning tunnelling microscopy, Surflnterface Anal 27, 507-5 1 1,

64.Wu, C., Brechbiel, M.W., Kozak, R.W., and Gansow, O.A. (1994) Metal-chelate-dendrimer-antibody constructs for use in radioimmunotherapy and imaging, Bioorg Med Chem Lett 4, 449-454.

65.Kawase, M., Kurikawa, N., Higashiyama, S., Miura, N., Shiomi, T., Ozawa, C., Mizoguchi, T., and Yagi, K. (1999) Effectiveness of polyamidoamine dendrimers modified with tripeptide growth factor, glycly-L-histidyl-L-lysine, for enhancement of function of hepatoma cells, J Biosci Bioeng 88, 433437.

66.Kobayashi, H., Wu, C., Kim, M., Paik, C.H., Carrasquillo, J.A., and Brechbiel, M.W. (1999) Evaluation of the in vivo biodistribution of indium-l 1 1 and yttrium-88 labelled dendrimer-lB4M- DTPA and its conjugation with anti-tac monoclonal antibody, Bioconjugate Chem 10, 103-1 11.

67.Malik, N., Evagorou, E.G., and Duncan, R. (1999) Dendrimer-platinate: a novel approach to cancer chemotherapy, Anti-Cancer Drug 10, 767-776.

68.Chen, C.Z., Tan, N.C.B., and Cooper, S.L. (I 999) Incorporation of dimethyldodecylammonium chloride functionalities onto poly(propylene imine) dendrimers significantly enhances their antibacterial properties, Chem Commun, 15851586.

69.Liu, M., Kono, K., and Frechet, J.M.J. (1999) Water-soluble dendrimer-poly(ethylene glycol) starlike conjugates as potential drug carriers, J Polym Sci Pol Chem 37, 3492-3503.

70.Leon, J.W., Kawa, M., and Frechet, J.M.J. (1996) Isophthalate ester-terminated dendrimers: versatile nanoscopic building blocks with readily modifiable surface functionalities, J Am Chem Soc 118, 8847-8859.

71, Singh, P. (1998) Terminal groups in starburst dendrimers: activation and reactions with proteins,

Bioconjugate Chem 9, 54-63.

72.Singh, P., Moll Ill, F., Lin, S.H., and Ferzli, C. (1996) Starburst dendrimers: a novel matrix for multifunctional reagents in immunoassays, CIin Chem 42, 1567-1 569.

73.Wilbur, D.S., Pathare, P.M., Hamlin, D.K., Buhler, K.R., and Vessella, R.L. (1998) Biotin reagents for antibody pretargeting. 3. Synthesis, radioiodination, and evaluation of biotinylated starburst dendrimers, Bioconjugate Chem 9, 813-825.

74.Singh, P., Moll III, F., Lin, S.H., Ferzli, C.. Yu, K.S., Koski, K., Saul, R.G., and Cronin, P. (1994) Starburst dendrimers: enhanced performance and flexibility for immunoassays, Clin Chem 40, 18451849.

75.Lee, Y.C. and Lee, R.T. (1995) Carbohydrate-protein interactions: basis of glycobiology, Accounts Chem Res 28, 321-321.

76.Meunier, S.J., Wu, Q,, Wang, S.-N., and Roy, R. (1997) Synthesis of hyperbranched glycodendrimers incorporating alpha-thiosialosides based on a gallic acid core, Can J Chem 75, 1472-1482.

77.Zanini, D. and Roy, R. (1997) Synthesis of new alpha-thiosialodendrimers and their binding properties to the sialic acid specific lectin from Limaxflavus, J A m Chem Soc 119, 2088-2095.

78.Reuter, J.D., Myc, A,, Hayes, M.M., Gan, Z., Roy, R., Qin, D., Yin, R., Piehler, L.T., Esfand, R., Tomalia, D.A., and Baker, J.R., Jr. (1999) Inhibition of viral adhesion and infection by sialic-acid- conjugated dendritic polymers, Bioconjugate Chem 10, 271 -278.

79.Ashton, P.R., Hounsell, E.F., Jayaraman, N., Nilsen, T.M., Spencer, N., Stoddart, J.F., and Young,

M. (1998) Synthesis and biological evaluation of alpha-D-mannopyranoside-containing dendrimers,

J Org Chem 63, 3429-3437.

80.Smith, D.K., Zingg, A,, and Diederich, F. (1999) Dendroclefts: optically active dendritic receptors for the selective recognition and chiroptical sensing of monosaccharide guests, Helv Chim Acta 82, 1225-1241.

66

Dendrimers: Chemical principles and biotechnology applications

81.Andre, S., Ortega, P.J.C., Perez, M.A., Roy, R.. and Gabius, H.-J. (1999) Lactose-containing starburst dendrimers: influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties, Glycobiology 9, 1253-1261.

82.Page, D. and Roy, R. (1997) Synthesis and biological properties of mannosylated starburst poly(amidoamine) dendrimers, Bioconjugate Chem 8, 7 14-723.

83.Thompson, J.P. and Schengrund, C.-L. (1997) Oligosaccharide-derivatised dendrimers: defined multivalent inhibitors of the adherence of the cholera toxin B subunit and the heat labile enterotoxin ofE. coli to GMI, Glycoconjugate J 14, 837-845.

84.Thompson, J.P. and Schengrund, C.-L. (1998) Inhibition of the adherence of cholera toxin and the heat-labile enterotoxin of E. coli to cell-surface GM 1 by oligosaccharide-derivatised dendrimers,

Biochem Pharmacol 56, 591-597.

85.Zanini, D. and Roy, R. (1998) Practical synthesis of starburst PAMAM alpha-thiosialodendrimers for probing multivalent carbohydrate-lectin binding properties, J Org Chem 63, 3486-3491.

86.Peerlings, H.W.I., Nepogodiev, SA., Stoddart, J.F., and Meijer, E.W. (1998) Synthesis of spacerarmed glycodendrimers based on the modification of poly(propylene imine) dendrimers, Eur J Org Chem 9, 1879-1886.

87.Langer, P., Ince, S.J., and Ley, S.V. (1998) Assembly of dendritic glycoclusters from monomeric mannose building blocks, J Chem Soc Perkin TI 23. 3913-3915.

88.Page, D., Zanini, D., and Roy, R. (1996) Macromolecular recognition: effect of multivalency in the inhibition of yeast mannan to concanvalin A and pea lectins by mannosylated dendrimers, Bioorgan Med Chem 4, 1949-1961.

89.Zanini, D. and Roy, R. (1997) Chemoenzymatic synthesis and lectin binding properties of dendritic N-acetyllactosamine, Bioconjugate Chem 8, 187-1 92.

90.Zhang, L.S., Torgerson, T.R., Liu, X.Y., Timinons, S., Colosia, A.D., Hawiger, J., and Tam, J.P. (1998) Preparation of functionally active cell-permeable peptides by single-step ligation of two

peptide modules, P Natl Acad Sci USA 95, 91 84-9 189.

91, Sakthivel, T., Toth, I., and Florence, A.T. (1998) Synthesis and physiochemical properties of lipophilic polyamide dendrimers, Pharmaceut Res 15. 776-782.

92.Tam, J.P. (1996) Recent advances in multiple antigen peptides, J lmmunol Methods 196, 17-32.

93.Keah, H.H., Kecorius, E., and Hearn, M.T.W. (1998) Direct synthesis and characterisation of multidendritic peptides for use as immunogens, J Pepi Rex 51, 2-8.

94.Barth, R.F., Adams, D.M., Soloway, A.H., Alam. F.. and Darby, M.V. (1994) Boronated starburst dendrimer-monoclonal antibody immunoconjugates: evaluation as a potential delivery system for neutron capture therapy, Bioconjugate Chem 5, 58-66.

95.Newkome, G.R., Moorefield, C.N., Keith, J.M., Baker, G.R., and Escamilla, G.H. (1994) Chemistry within a unimolecular micelle precursor: boron superclusters by siteand depth-specific transformations of dendrimers, Angew Chem Int Edit 33, 666-668.

96.Qualmann, B., Kessels, M.M., Klobasa, F., Jungblut, P.W., and Sierralta, W.D. (1996) Electron spectroscopic imaging of antigens by reaction with boronated antibodies, J Microsc-Oxford 183, 6977.

97.Capala, J., Barth, R.F., Bendayan, M., Lauzon. M., Adams, D.M., Soloway, A.H., Fenstermaker, R.A., and Carlsson, J. (1996) Boronated epidermal growth factor as a potential targeting agent for boron neutron capture therapy of brain tumours. Bioconjugate Chem 7, 7-15.

98.Wiener, E.C., Brechbiel, M.W., Brothers, H., Magin, R.L., Gansow, O.A., Tomalia, D.A., and Lauterbur, P.C. (1994) Dendrimer-based metal clielates: a new class of magnetic resonance imaging contrast agents, Magn. Reson. Med. 31, 1-8.

99.Bulte, J.W.M., Wu, C., Brechbiel, M.W.. Brooks. R.A., Vymazal, J., Holla, M., and Frank, J.A. (1998) Dysprosium-DOTA-PAMAM dendrimers as macromolecular T2 contrast agents: preparation and relaxometry, Invest Radiol 33, 841-845.

100.Lauffer, R.B. (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design., Chem Rev 87, 901-927.

101.Toth, E., Pubanz, D., Vauthey, S., Helm, L., and Merbach, A,E. (1996) The role of water exchange in attaining maximum relaxivities for dendrimeric MRI contrast agents, Chem-Eur J2, 1607-1 61 5.

67

L.Henry Bryant, Jr. and Jeff W.M. Bulte

102.Bryant, L.H., Jr., Brechbiel, M.W., Wu, C., Bulte, J.W.M., Herynek, V., and Frank, J.A. (1999) Synthesis and relaxometry of high-generation (G=5, 7, 9, and 10) PAMAM dendrimer-DOTA- gadolinium chelates, J Magn Reson Imaging 9, 348-352.

103.Adam, G., Neuerburg, J., Spuntrup, E., Muhler. A.. Scherer, K., and Gunther, R.W. (1994) Gd- DTPA-Cascade-Polymer: potential blood pool contrast agent for MR imaging, J Magn Reson Imaging 4, 462-466.

104.Schwickert, H.C., Roberts, T.P.L., Muhler, A,, Stiskal, M., Demsar, F., and Brasch, R.C. (1995) Angiographic properties of Gd-DTPA-24-cascade-polymer--a new macromolecular MR contrast agent, Eur J Radiol 20, 144-1 50.

105.Adam, G., Muhler, A., Spuntrup, E., Neuerburg. J.M., Kilbinger, M., Bauer, H., Fucezi, L., Kupper, W., and Gunther, R.W. (1996) Differentiation of spontaneous canine breast tumours using dynamic magnetic resonance imaging with 24-gadolinium-DTPA-cascade-polymer, a new blood-pool agentpreliminary experience, Invest Radiol 31, 267-274.

106.Bourne, M.W., Margerun, L., Hylton, N., Campion. B., Lai, J.-J., Derugin, N., and Higgins, C.B. (1996) Evaluation of the effects of intravascular MR contrast media (gadolinium dendrimer) on 3D time of flight magnetic resonance angiography ofthe body, J Magn Reson Imaging 6,305-310.

107.Margerum, L.D., Campion, B.K., Koo, M., Shargill, N., Lai, J.-J., Marumoto, A,, and Sontum, P.C. (1 997) Gadolinium(III) D03A macrocycles and polyethylene glycol coupled to dendrimers-effect of molecular weight on physical and biological properties of macromolecular magnetic resonance imaging contrast agents, J Alloy Compd 249, 185190.

108.Wiener, E.C., Konda, S., Shadron, A., Brechbiel, M., and Gansow, 0. (1997) Targeting dendrimerchelates to tumours and tumour cells expressing the high-affinity folate receptor, Invest Radiol 32, 748-754.

109.Demsar, F., Shames, D.M., Roberts, T.P.L., Stiskal, M., Roberts, H.C., and Brasch, R.C. (1998) Kinetics of MRI contrast agents with a size ranging between Gd-DTPA and albumin-Gd-DTPA: use of cascade -Gd-DTPA-24 polymer, Electro Magnetobio 17,283-297.

110.Prévôté, D., Donnadieu, B., Moreno-Manas, M., Caminade, A.-M., and Majoral, J.-P. (1999) Grafting of tetraazamacrocycles on the surface of phosphorous-containing dendrimers, Eur J Org Chem, 1701-1708.

111.Bosman, A.W., Schenning, A.P.H.J., Janssen, R.A.J., and Meijer, E.W. (1997) Well-defined metallodendrimers by site-specific complexation, Chem Ber-Rec 130, 725-728.

112.Lange, P., Schier, A,, and Schmidbaur, H. (1996) Dendrimer-based multinuclear gold(1) complexes, lnorg Chem 35, 637-642.

113.Zhao, M., Sun, L., and Crooks, R.M. (1998) Preparation of Cu nanoclusters within dendrimer templates, J Am Chem Soc 120,4877-4878,

114.Balogh, L. and Tomalia, D.A. (1998) Poly(amidoamine) dendrimer-templated nanocomposites. 1, Synthesis of zerovalent copper nanoclusters, J Am Chem Soc 120, 7355-7356.

11 5. Zhao, M. and Crooks, R.M. (1999) Dendrimer-encapsulated Pt nanoparticles: synthesis, characterisation, and applications to catalysis, Adv Mater 11, 217-220.

116.Garcia, M.E., Baker, L.A., and Crooks, R.M. (1999) Preparation and characterisation of dendrimergold colloid nanocomposites, Anal Chem 71, 256-258.

117.Bulte, J.W.M., Douglas, T., Strable, E., Moskowitz, B.M., and Frank, J.A. (2000) Magnetodendrimers as a new class of cellular contrast agents, Proc Intl Soc Mug Reson Med 8, 2062.

118.Kukowska-Latallo, J.F., Bielinska, A.U., Johnson. J., Spindler, R., Tomalia, D.A., and Baker, J.R., Jr. (1996) Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers, P Natl Acad Sci USA 93, 4897-4902.

119.Tang, M.X., Redemann, C.T., and Szoka, F.C., Jr. (1996) In vitro gene delivery by degraded polyamidoamine dendrimers, Bioconj Chem 7, 703-7 14.

120.Bielinska, A,, Kukowska-Latallo, J.F., Johnson. J., Tomalia, D.A., and Baker, J.R., Jr. (1996) Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers, Nucleic Acids Res 24, 2176-2182.

121.Qin, L., Pahud, D.R., Ding, Y., Bielinska, A.U., Kukowska-Latallo, J.F., Baker, J.R., Jr, and Bromberg, J.S. (1998) Efficient transfer of genes into murine cardiac grafts by starburst polyamidoamine dendrimers, Human Gene Theropy 9, 553-560.

68

Dendrimers: Chemical principles and biotechnology applications

122.Hudde, T., Rayner, S.A., Comer, R.M., Weber, M., Isaacs: J.D., Waldmann, H., Larkin, D.F.P., and George, A.J.T. (1999) Activated polyamidoamine dendrimers, a non-viral vector for gene transfer to the corneal endothelium, Gene Therapy 6, 939-943.

123.Ottaviani, M.F., Sacchi, B., Turro, N.J., Chen. W.. .lockusch, S., and Tomalia, D.A. (1999) An EPR study of the interactions between starburst dendrimers and polynucleotides, Macromolecules 32, 2275-2282.

124.Bielinska, A.U., Chen, C., Johnson, J., and Baker, J.R.: Jr. (1999) DNA complexing with polyamidoamine dendrimers: implications for transfection. Bioconjugate Chem 10, 843-850.

125.Bielinska, A.U., Kukowska-Latallo, J.F., and Baker, J.R., Jr. (1997) The interaction of plasmid DNA with polyamidoarnine dendrimers: mechanism of complex formation and analysis of alterations induced in nuclease sensitivity and transcriptional activity of the complexed DNA, Biochim Biophys Acta 1353, 180-190.

126.Dagani, R. (1996) Chemists explore potential of dendritic macromolecules as functional materials,

C&EN June 23,30-38.

127.Jansen, J.F.G.A., de Brabander-van den Berg. E.M.M.. and Meijer, E.W. (1994) Encapsulation of guest molecules into a dendritic box, Science 266, 1226-1229.

128.Stanssens, D. (1999) Applications of apolar-modified Astramol poly(propyleneimine) dendrimers, Workshop on Properties and Applications of Dendritic Polymers, NIST.

69

This page intentionally left blank.

RATIONAL DESIGN OF P450 ENZYMES FOR BIOTECHNOLOGY

SHEILA J. SADEGHI, GEORGIA E. TSOTSOU, MICHAEL FAIRHEAD, YERGALEM T. MEHARENNA AND GIANFRANCO GILARDI*

Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK

Abstract

Nanobiotechnology is a novel field where bio-molecules are assembled on devices for exploitation in bio-analytical applications. The increased understanding of the structure-function relationship of redox proteins and enzymes combined with the progress made in protein engineering, molecular spectroscopy and structural biology allows today the possibility of creating genetically engineered proteins/enzymes to be used in arrays for high-through-put screening.

This paper reports on the use of small and well characterised electron transfer proteins/enzymes, such as flavodoxin, cytochrome c553 and cytochrome P450 as modules to design and construct covalently linked, artificial electron transfer chains. Functional characterisation of these molecular wires will increase our understanding on the structure-function relationships in electron transfer systems. This approach has been named “molecular lego”, and its application to cytochromes P450, an important class of enzymes responsible for the metabolism of a large number of drugs and xenobiotics, is particularly relevant to biotechnology. An efficient, artificial electron transfer chain was obtained by fusing the flavodoxin from D. vulgaris and the soluble haem domain of cytochrome P450 from B. megaterium. Moving to a higher level of complexity, the scaffold of this soluble enzyme was also used to insert the key structural and functional elements of the human cytochrome P450 2E1. The chimeric protein containing the fused bacterial and human domains was successfully engineered. Finally, a method designed to identify active P450 mutants to be used for the assembly of arrays with different activity/specificity is presented.

71

M. De Cuyper and J.W.M. Bulte (eds.), Physics and Chemistry Basis of Biotechnology, 71-104. © 2001 Kluwer Academic Publishers. Printed in the Netherlands.

Sheila J. Sadeghi et al

1. Introduction

Electron transfer (ET) is essential for life: not only it provides means for harnessing solar energy through photosynthesis but it is also of crucial importance for the generation of metabolic energy in living cells [1-3]. This process is extremely interesting from a technological point of view as many reactions of biotechnological interest such as degradation of pollutants and drug and food processing are based on redox systems. The biotechnological exploitation of this process together with the rapidly growing field of biosensors and bioelectronics leads to fascinating possibilities especially in the creation of amperometric biosensors.

However, the key factor for the successful exploitation of new and interesting redox enzymes in amperometric devices remains the efficient interaction with electrode surfaces. Much success has been achieved in the modification of electrode surfaces with various strategies aiming at rendering the electrode surface more compatible with the biological matrix, in its delicate balance of the folded and active state [4-7]. In some cases the rate of success is limited by the fact that the relevant redox centre is deeply buried in the biological matrix, that in this way can control the properties and reactivity of such centre, but with the detriment of the bio-electrochemical signal. A notable example of such case is the well-known and highly relevant family of cytochromes P450 [8-9].

Recent progress made in the area of protein engineering, molecular spectroscopy and structural biology allows today the possibility of rationally designing site-directed mutants of proteins and enzymes with properties tailored, for example, for the oriented immobilisation on electrode surfaces [10-12].

Despite the great amount of reactions carried out simultaneously by many enzymes on the numerous substrates in the cell, the living systems exhibit highly efficient redox chains, where electrons are tunnelled in specific directions to sustain life. This success is the result of the slow process of evolution that can today be speeded up and mimicked by the protein engineer towards targets for the benefit of bioelectrochemistry. In particular, novel protein engineering methods based on random mutagenesis and in vivo selection and/or in vitro screening allows the creation of combinatorial libraries of proteins and enzymes that can be evolved for specific biotechnological targets [13-14]. This approach to engineering proteins is complementary to the rational, site-directed approach (Figure 1), and it can extend the capabilities in the generation of new proteins, beyond their physiological functions.

This paper reports on the progress made on selected aspects of protein engineering applied to the amperometric biosensor area, with particular reference to P450 enzymes and its implications in the pharmaceutical and bioreinediation areas of application.

1.1. INTERPROTEIN ELECTRON TRANSFER

The fundamental importance of protein ET in biology and the potential biotechnological implications that it underpins have attracted much research effort over the last decade. This has mostly been directed towards elucidating the nature of the

72

Rational design of P450 enzymes for biotechnology

interactions between hypothetical physiological ET partners demonstrating how interprotein ET is the result of a number of events that occur in several stages [15-16]. The initial event leading to the reaction is the diffusional encounter of the protein pairs stirred by electrostatic and steric forces communicated through the solvent electrolyte medium; among these stirring parameters, long-range electrostatics are often the overruling forces [15]. The net charges on the proteins not only enhance the rate of collision by diffusion, but also cause their dipole moments [17-19] to line up in a specific orientation. The second event leading to inter-protein ET is the formation of a complex between the redox pairs, where a specific interaction is required to produce a configuration that actually results in rapid ET. The complex formation is expected to depend upon the nature of the protein surface topology and the distribution of the charged residues. A good fit between the surfaces of the two proteins allows their redox centres to be brought into close proximity under the control of short range forces such as hydrogen bonds, van der Waals forces, electrostatic and hydrophobic interactions [15]. The balance between these forces can vary markedly in different ET complexes. Once an ET competent complex has been formed, the ET process occurs, leading to the third stage of the reaction. This in turn depends on a variety of factors including the geometric disposition of donor and acceptor sites in the complex, the difference in free energy of the oxidised and reduced states, the activation energy, reorganisation energy and the electronic coupling between the two redox centres. These parameters and their influence over the kinetics and thermodynamics of this process have been described by Marcus and Sutin [20].

Figure 1. Flow chart depicting the several experimental stages involved in rational design and directed evolution.

When the rates of ET are very/extremely fast, other processes may become rate limiting. For instance, when the pre-complexes have to undergo dynamic reorientation

73

Соседние файлы в предмете Химия