Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
87
Добавлен:
21.05.2015
Размер:
1.44 Mб
Скачать

1_1 Информатика – это область человеческой деятельности, связанная с процессами преобразования информации с помощью компьютеров и их взаимодействием со средой применения.

Информатика – отрасль народного хозяйства (производство компьютерной техники, программ), фундаментальная наука (разработка методологии создания информационного обеспечения), прикладная наука (изучения закономерностей, моделирование).

Объект - информационные процессы (в кот. Участвуют приемник, канал связи, передатчик, помехи)

Предмет – проявление информ. процессов в технике

Отдельной наукой информатика была признана лишь в 1970-х; до этого она развивалась в составематематики,электроникии других технических наук. Некоторые начала информатики можно обнаружить даже влингвистике. С момента своего признания отдельной наукой информатика разработала собственныеметодыитерминологию.

Направления:

1. Теоретическая информатика - математическая логика, вычислительная математика, теория информации, системный анализ (формальное описание реальных объектов), теория принятия решений

2. Искусственный интеллект. - робототехника, экспертные системы, нейрокибернетика, нейронные сети,

3. Программирование. - системное ПО, операционные системы, ЯП высокого уровня, трансляторы, прикладное программирование

4. Прикладная информатика.- АСНИ, САПР, АИС, АОС, АСУ

5. Вычислительная техника. -

6. Кибернетика. - аспознавание образов, гомеостатика, математическая лингвистика

Социальный аспект: - влияние информационных технологий на изменение социальной структуры современного общества;

- государственное управление и политическая жизнь общества в условиях развития информационного общества;- электронные и печатные СМИ: конвергенция или антагонизм;- пути развития информационного общества (в сторону обособления личности, ее автономии и независимости от государственных и прочих структур) и социальная психология

информационного общества;- частная жизнь человека и гарантии ее неприкосновенности в информационном обществе;- сеть как система управления государством будущего (электронная демократия);- информационное общество и человек нового типа.

Правовые аспекты:- новые информационные технологии и их влияние на правовое регулирование, информационная безопасность в информационном обществе;- права и свободы граждан информационного общества;- компьютер как идеальное средство контроля за индивидуумом;- правовые проблемы формирования единого глобального экономического, информационного, культурного, образовательного, правового пространства;- компьютерные преступления и их виды;- методы защиты информации;- компьютерная пресса и компьютерный бизнес;- пользовательские качества информационных технологий;- нелицензионное использование программного обеспечения - причины и следствия.

После второй мировой войны возникла и начала бурно развиваться кибернетика как наука об общих закономерностях в управлении и связи в различных системах: искусственных, биологических, социальных. Рождение кибернетики принято связывать с опубликованием в 1948 г. американским математиком Норбертом Винером, ставшей знаменитой, книги "Кибернетика, или управление и связь в животном и машине".

Черты технической науки придают информатике ее аспекты, связанные с созданием и функционированием машинных систем обработки информации. Так, академик А.А.Дородницын определяет состав информатики как три неразрывно и существенно связанные части: технические средства, программные и алгоритмические. Первоначальное наименовании школьного предмета "Основы информатики и вычислительной техники" в настоящее время изменено на "Информатика" (включающее в себя разделы, связанные с изучением технических, программных и алгоритмических средств). Науке информатике присущи и некоторые черты гуманитарной (общественной) науки, что обусловлено ее вкладом в развитие и совершенствование социальной сферы. Таким образом, информатика является комплексной, междисциплинарной отраслью научного знания.

1_2 Информация (от лат. informatio — осведомление, разъяснение, изложение)

сведения (сообщения, данные) независимо от формы их представления.

абстрактное понятие, имеющее множество значений, в зависимости от контекста. Обычно под информацией понимаются сведения, сообщения, данные и т.д. В настоящее время не существует единого определения термина информация. С точки зрения различных областей знания, данное понятие описывается своим специфическим набором признаков.

Свойства информации

Фундаментальные свойства информации

Cреди неотъемлемых свойств информации выделяют:

запоминаемость

передаваемость

преобразуемость

воспроизводимость

стираемость

Свойства информации, определяющие её качества

Под качеством информации понимают степень её соответствия потребностям потребителей. Свойства информации являются относительным, так как зависят от потребностей потребителя информации. Выделяют следующие свойства, характеризующие качество информации:

Объективность информации характеризует её независимость от чьего-либо мнения или сознания, а также от методов получения. Более объективна та информация, в которую методы получения и обработки вносят меньший элемент субъективности.

Полнота. Информацию можно считать полной, когда она содержит минимальный, но достаточный для принятия правильного решения набор показателей. Как неполная, так и избыточная информация снижает эффективность принимаемых на основании информации решений.

Достоверность - свойство информации быть правильно воспринятой Объективная информация всегда достоверна, но достоверная информация может быть как объективной, так и субъективной. Причинами недостоверности могут быть:

Преднамеренное/непреднамеренное искажение субъективного свойства, искажение в результате воздействия помех, ошибки фиксации информации;

виды :

непрерывная

дискретная

непрерывно-дискретная

дискретно-непрерывная

В общем случае достоверность информации достигается:

указанием времени свершения событий, сведения о которых передаются;

сопоставлением данных, полученных из различных источников;

своевременным вскрытием дезинформации;

исключением искаженной информации и др.

Адекватность - степень соответствия реальному объективному состоянию дела.

Доступность информации — мера возможности получить ту или иную информацию.

Актуальность информации — это степень соответствия информации текущему моменту времени.

Также можно классифицировать свойства информации, характеризующие её качество, следующим образом

Содержательность или внутреннее качество (качество, присущее собственно информации и сохраняющееся при её переносе из одной системы в другую)

Значимость (свойство сохранять ценность для потребителя с течением времени)

Полнота (свойство, характеризуемое мерой её достаточности для решения определенных задач)

Идентичность (свойство, заключающееся в соответствии информации состоянию объекта)

Кумулятивность (свойство информации, заключённой в массиве небольшого объёма достаточно полно отражать действительность)

Избирательность

Гомоморфизм

Защищённость или внешнее качество (качество, присущее информации, находящейся или используемой только в определённой системе)

Сохранность

Достоверность

Конфиденциальность

Виды информации

Информацию можно разделить на виды по нескольким признакам.

По способу восприятия

Для человека информация подразделяется на виды в зависимости от типа воспринимающих её рецепторов.

Визуальная — воспринимаемая органами зрения.

Аудиальная — воспринимаемая органами слуха.

Тактильная — воспринимаемая тактильными рецепторами.

Обонятельная — воспринимаемая обанятельными рецепторами.

Вкусовая — воспринимаемая вкусовыми рецепторами.

По форме представления

По форме представления информация делится на следующие виды.

Текстовая — передоваемая в виде символов, предназначенных обозначать лексемы языка.

Числовая — в виде цифр и знаков, обозначающих математические действия.

Графическая — в виде изображений, событий, предметов, графиков.

Звуковая — устная или в виде записи передача лексем языка аудиальным путем.

По предназначению

Массовая — содержит тривиальные сведения и оперирует набором понятий, понятным большей части социума.

Специальная — содержит специфический набор понятий, при использовании происходит передача сведений, которые могут быть не понятны основной массе социума, но необходимы и понятны в рамках узкой социальной группы, где используется данная информация.

Личная — набор сведений о какой-либо личности, определяющий социальное положение и типы социальных взаимодействий внутри популяции.

Первичные единицы

Сравнение разных единиц измерения информации. Дискретные величины представлены прямоугольниками, единица «нат» — горизонтальным уровнем. Риски слева — логарифмы натуральных чисел.

Объёмы информации можно представлять как логарифм количества состояний.

Наименьшее целое число, логарифм которого положителен — 2. Соответствующая ему единица — бит — является основой исчисления информации в цифровой технике.

Такая единица как нат (nat, е-бит), соответствующая натуральному логарифму применяется в вычислительной технике в инженерных и научных расчётах. Основание натуральных логарифмов не является целым числом.

Единицы, производные от бита

Целые количества бит отвечают количеству состояний, равному степеням двойки.

Особое название имеет 4 бита — ниббл (полубайт, тетрада, четыре двоичных разряда), которые вмещают в себя количество информации, содержащейся в одной шестнадцатеричной цифре.

Следующей по порядку популярной единицей информации является 8 бит, или байт (о терминологических тонкостях написано ниже). Именно к байту (а не к биту) непосредственно приводятся все большие объёмы информации, исчисляемые в компьютерных технологиях.

Такие величины как машинное слово и т. п., составляющие несколько байт, в качестве единиц измерения почти никогда не используются.

Килобайт

Основная статья: Килобайт

Для измерения больших количеств байтов служат единицы «килобайт» = 1000 байт и «Кбайт» (кибибайт, kibibyte) = 1024 байт (о путанице десятичных и двоичных единиц и терминов см. ниже). Такой порядок величин имеют, например:

Сектор диска обычно равен 512 байтам то есть половине Кбайт, хотя для некоторых устройств может быть равен одному или двум Кбайт.

Классический размер «блока» в файловых системах UNIX равен одному Кбайт (1024 байт).

«Страница памяти» в процессорах x86 (начиная с модели Intel 80386) имеет размер 4096 байт, то есть 4 Кбайт.

Объём информации, получаемой при считывании дискеты «3,5″ высокой плотности» равен 1440 Кбайт (ровно); другие форматы также исчисляются целым числом Кбайт.

Мегабайт

Основная статья: Мегабайт

Единицы «мегабайт» = 1000 килобайт = 1000000 байт и «Мбайт» (мебибайт, mebibyte) = 1024 Кбайт = 1 048 576 байт применяются для измерения объёмов носителей информации.

Объём адресного пространства процессора Intel 8086 был равен 1 Мбайт.

Оперативную память и ёмкость CD-ROM меряют двоичными единицами (мебибайтами, хотя их так обычно не называют), но для объёма НЖМД десятичные мегабайты были более популярны.

Современные жёсткие диски имеют объёмы, выражаемые в этих единицах минимум шестизначными числами, поэтому для них применяются гигабайты.

Гигабайт

Основная статья: Гигабайт

Единицы «гигабайт» = 1000 мегабайт = 1000000000 байт и «Гбайт»[3] (гибибайт, gibibyte) = 1024 Мбайт = 230 байт измеряют объём больших носителей информации, например жёстких дисков. Разница между двоичной и десятичной единицами уже превышает 7 %.

Размер 32-битного адресного пространства равен 4 Гбайт ≈ 4,295 гигабайт. Такой же порядок имеют размер DVD-ROM и современных носителей на флеш-памяти. Размеры жёстких дисков уже достигают сотен и тысяч гигабайт.

Для исчисления ещё больших объёмов информации имеются единицы терабайт—тебибайт (1012 и 240 соответственно), петабайт—пебибайт (1015 и 250 соответственно) и т. д.

Что такое «байт»?

Основная статья: Байт

В принципе, байт определяется для конкретного компьютера как минимальный шаг адресации памяти, который на старых машинах не обязательно был равен 8 битам (а память не обязательно состоит из битов — см., например: троичный компьютер). В современной традиции, байт часто считают равным восьми битам.

В таких обозначениях как Кбайт (русское) или KB (английское) под байт (B) подразумевается именно 8 бит, хотя сам термин «байт» не вполне корректен с точки зрения теории.

Во французском языке используются обозначения o, Ko, Mo и т. д. (от слова octet) дабы подчеркнуть, что речь идёт именно о 8 битах.

Чему равно «кило»?

Основная статья: Двоичные приставки

Долгое время разнице между множителями 1000 и 1024 старались не придавать большого значения. Следует чётко понимать различие между:

двоичными кратными единицами, обозначаемыми согласно ГОСТ 8.417-2002 как «Кбайт», «Мбайт», «Гбайт» и т. д. (два в степенях кратных десяти);

единицами килобайт, мегабайт, гигабайт и т. д., понимаемыми как научные термины (десять в степенях кратных трём).

Последние по определению равны соответственно байт.

В качестве терминов для «Кбайт», «Мбайт», «Гбайт» и т. д. МЭК предлагает «кибибайт», «мебибайт», «гибибайт» и т. д., однако эти термины критикуются за непроизносимость и не встречаются в устной речи.

В различных областях информатики предпочтения в употреблении десятичных и двоичных единиц тоже различны. Причём, хотя со времени стандартизации терминологии и обозначений прошло уже несколько лет, далеко не везде стремятся прояснить точное значение используемых единиц. В английском языке для «киби»=1024 иногда используют прописную букву K, дабы подчеркнуть отличие от обозначаемой строчной буквой приставки СИ кило. Однако, такое обозначение не опираются на авторитетный стандарт, в отличие от российского ГОСТа касательно «Кбайт».

1_3. Человек использует компьютер для решения самых разнообразных информационных задач: работа с текстами, создание графических изображений, получение справки из базы данных, табличные расчеты, решение математических задач, расчет технических конструкций и многое другое. Для их решения в распоряжении пользователя имеется обширное программное обеспечение: системное ПО (ядром которого является операционная система), прикладное ПО (программы, предназначенные для пользователя) и системы программирования (средства для создания программ на языках программирования).

Исходя из условия задачи, пользователь решает для себя вопрос о том, каким программным средством он воспользуется. Если в составе доступного прикладного программного обеспечения имеется программа, подходящая для решения данной задачи, то пользователь выбирает ее в качестве инструмента (СУБД, табличный процессор, математический пакет и др.). В том случае, когда готовым прикладным ПО воспользоваться нельзя, приходится прибегать к программированию на универсальных языках, т. е. выступать в роли программиста.

Часто решение прикладных задач с помощью компьютера называют моделированием, т. к. в этом случае обычно используют упрощенное представление о реальном объекте, процессе или явлении.

Работа по решению прикладной задачи на компьютере проходит  через следующие этапы:

  • постановка задачи;

  • математическая формализация;

  • построение алгоритма;

  • составление программы на языке программирования;

  • отлад­ка и тестирование программы;

  • проведение расчетов и анализ полученных результатов.

Постановка задачи.

На этапе постановки задачи должно быть четко определено, что дано, и что требуется найти. Так, если задача конкретная, то под постановкой задачи понимают ответ на два вопроса: какие исходные данные известны и

что требуется определить. Если задача обобщенная, то при постановке задачи понадобится еще ответ на третий вопрос: какие данные допустимы. Таким образом, постановка задачи включает в себя следующие моменты: сбор информации о задаче; формулировку условия задачи; определение конечных целей решения задачи; определение формы выдачи результатов; описание данных (их типов, диапазонов величин, структуры и т. п.).

Моделирование.

На этом этапе строится математическая модель - система математических соотношений - формул, уравнений, неравенств и т. д., отражающих существенные свойства объекта или явления. Необходимо отметить, что при построении математических моделей далеко не всегда удается найти формулы, явно выражающие искомые величины через данные. В таких случаях используются математические методы, позволяющие дать ответы той или иной степени точности.

В случае большого числа параметров, ограничений, возможных вариантов исходных данных модель явления может иметь очень сложное математическое описание (правда, реальное явление еще более сложно), поэтому часто построение математической модели требует упрощения требований задачи. Необходимо выявить самые существенные свойства объекта, явления или процесса, закономерности; внутренние связи, роль отдельных характеристик. Выделив наиболее важные факторы, можно пренебречь менее существенными.

Итак, создавая математическую модель для решения задачи, нужно: выделить предположения, на которых будет основываться математи­ческая модель; определить, что считать исходными данными и результатами; записать математические соотношения, связывающие результаты с исходными данными.

Построение алгоритма.

Наиболее эффективно математическую модель можно реализовать на компьютере в виде алгоритмической модели. Для этого может быть использован язык блок-схем или какой-нибудь псевдокод, например учебный алгоритмический язык. Разработка алгоритма включает в себя выбор метода проектирования алгоритма; выбор формы записи алгоритма (блок-схемы, псевдокод и др.); выбор тестов и метода тестирования; проектирование самого алгоритма.

Программирование.

Первые три этапа - это работа без компьютера. Дальше следует собственно программирование на определенном языке в определенной системе программирования. Программирование включает в себя следующие виды работ: выбор языка программирования; уточнение способов организации данных; запись алгоритма на выбранном языке программирования.

Справедливости ради, надо сказать, что этот этап решения задачи было бы правильнее назвать "Компьютерным моделированием", т. к. при решении некоторых задач можно обойтись без составления программы на языке программирования, это можно успешно сделать, используя современные приложения (электронные таблицы, системы управления базами данных и пр.). В этом случае не понадобится и следующий этап - отладка и тестирование программы, а вот проведение расчетов и анализ полученных результатов следует проводить с особой тщательностью.

Соседние файлы в папке Ответы к ГОСам от Димы