Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Physics of biomolecules and cells

.pdf
Скачиваний:
52
Добавлен:
15.08.2013
Размер:
11.59 Mб
Скачать

CONTENTS

Lecturers

xi

Participants

xiii

Pr´eface

xvii

Preface

xxi

Contents

xxv

Course 1. Physics of Protein-DNA Interaction

 

by R.F. Bruinsma

1

1 Introduction

3

1.1 The central dogma and bacterial gene expression . . . . . . . . . .

3

 

1.1.1

Two families . . . . . . . . . . . . . . . . . . . . . . . . . .

3

 

1.1.2

Prokaryote gene expression . . . . . . . . . . . . . . . . . .

5

1.2

Molecular structure . . . . . . . . . . . . . . . . . . . . . . . . . .

8

 

1.2.1

Chemical structure of DNA . . . . . . . . . . . . . . . . . .

8

 

1.2.2

Physical structure of DNA . . . . . . . . . . . . . . . . . . .

10

 

1.2.3

Chemical structure of proteins . . . . . . . . . . . . . . . .

12

 

1.2.4

Physical structure of proteins . . . . . . . . . . . . . . . . .

14

2 Thermodynamics and kinetics of repressor-DNA interaction

16

2.1 Thermodynamics and the lac repressor . . . . . . . . . . . . . . . .

16

 

2.1.1 The law of mass action . . . . . . . . . . . . . . . . . . . .

16

 

2.1.2 Statistical mechanics and operator occupancy . . . . . . . .

19

 

2.1.3 Entropy, enthalpy, and direct read-out . . . . . . . . . . . .

20

 

2.1.4

The lac repressor complex: A molecular machine . . . . . .

23

2.2

Kinetics of repressor-DNA interaction . . . . . . . . . . . . . . . .

26

 

2.2.1

Reaction kinetics . . . . . . . . . . . . . . . . . . . . . . . .

26

 

2.2.2

Debye–Smoluchowski theory . . . . . . . . . . . . . . . . . .

28

 

2.2.3

BWH theory . . . . . . . . . . . . . . . . . . . . . . . . . .

30

 

2.2.4 Indirect read-out and induced fit . . . . . . . . . . . . . . .

32

xxvi

3 DNA deformability and protein-DNA interaction

34

3.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

 

3.1.1 Eukaryotic gene expression and Chromatin condensation . .

34

 

3.1.2 A mathematical experiment and White’s theorem . . . . . .

37

3.2

The worm-like chain . . . . . . . . . . . . . . . . . . . . . . . . . .

40

 

3.2.1 Circular DNA and the persistence length . . . . . . . . . .

42

 

3.2.2 Nucleosomes and the Marky–Manning transition . . . . . .

42

 

3.2.3

Protein-DNA interaction under tension . . . . . . . . . . .

45

 

3.2.4

Force-Extension Curves . . . . . . . . . . . . . . . . . . . .

47

3.3

The RST model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

 

3.3.1

Structural sequence sensitivity . . . . . . . . . . . . . . . .

50

 

3.3.2

Thermal fluctuations . . . . . . . . . . . . . . . . . . . . . .

52

4 Electrostatics in water and protein-DNA interaction

53

4.1

Macro-ions and aqueous electrostatics . . . . . . . . . . . . . . . .

54

4.2

The primitive model . . . . . . . . . . . . . . . . . . . . . . . . . .

56

 

4.2.1

The primitive model: Ion-free . . . . . . . . . . . . . . . . .

57

 

4.2.2

The primitive model: DH regime . . . . . . . . . . . . . . .

57

4.3

Manning condensation . . . . . . . . . . . . . . . . . . . . . . . . .

58

 

4.3.1

Charge renormalization . . . . . . . . . . . . . . . . . . . .

58

 

4.3.2

Primitive model: Oosawa theory . . . . . . . . . . . . . . .

59

 

4.3.3

Primitive model: Free energy . . . . . . . . . . . . . . . . .

61

4.4Counter-ion release and non-specific protein-DNA interaction . . . 63

4.4.1 Counter-ion release . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.2Nucleosome formation and the isoelectric instability . . . . 64

Course 2. Mechanics of Motor Proteins

 

 

by J. Howard

69

1

Introduction

71

2

Cell motility and motor proteins

72

3

Motility assays

73

4

Single-molecules assays

75

5

Atomic structures

77

6

Proteins as machines

78

7

Chemical forces

80

8

E ect of force on chemical equilibria

81

9

E ect of force on the rates of chemical reactions

82

 

 

 

xxvii

10

Absolute rate theories

85

11

Role of thermal fluctuations in motor reactions

87

12

A mechanochemical model for kinesin

89

13

Conclusions and outlook

92

Course 3. Modelling Motor Protein Systems

 

 

by T. Duke

95

1

Making a move: Principles of energy transduction

98

 

1.1

Motor proteins and Carnot engines . . . . . . . . . . . . . . . . .

. 98

 

1.2

Simple Brownian ratchet . . . . . . . . . . . . . . . . . . . . . . . .

99

 

1.3

Polymerization ratchet . . . . . . . . . . . . . . . . . . . . . . . . .

100

 

1.4

Isothermal ratchets . . . . . . . . . . . . . . . . . . . . . . . . . . .

103

 

1.5

Motor proteins as isothermal ratchets . . . . . . . . . . . . . . . .

104

 

1.6

Design principles for e ective motors . . . . . . . . . . . . . . . . .

105

2

Pulling together: Mechano-chemical model of actomyosin

108

 

2.1

Swinging lever-arm model . . . . . . . . . . . . . . . . . . . . . . .

108

 

2.2

Mechano-chemical coupling . . . . . . . . . . . . . . . . . . . . . .

110

 

2.3

Equivalent isothermal ratchet . . . . . . . . . . . . . . . . . . . . .

111

 

2.4

Many motors working together . . . . . . . . . . . . . . . . . . . .

112

 

2.5

Designed to work . . . . . . . . . . . . . . . . . . . . . . . . . . . .

115

 

2.6

Force-velocity relation . . . . . . . . . . . . . . . . . . . . . . . . .

116

 

2.7

Dynamical instability and biochemical synchronization . . . . . . .

118

 

2.8

Transient response of muscle . . . . . . . . . . . . . . . . . . . . .

119

3

Motors at work: Collective properties of motor proteins

119

 

3.1

Dynamical instabilities . . . . . . . . . . . . . . . . . . . . . . . . .

119

 

3.2

Bidirectional movement . . . . . . . . . . . . . . . . . . . . . . . .

120

 

3.3

Critical behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . .

121

 

3.4

Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

124

 

3.5

Dynamic buckling instability . . . . . . . . . . . . . . . . . . . . .

125

 

3.6

Undulation of flagella . . . . . . . . . . . . . . . . . . . . . . . . .

127

4

Sense and sensitivity: Mechano-sensation in hearing

129

 

4.1

System performance . . . . . . . . . . . . . . . . . . . . . . . . . .

129

 

4.2

Mechano-sensors: Hair bundles . . . . . . . . . . . . . . . . . . . .

130

 

4.3

Active amplification . . . . . . . . . . . . . . . . . . . . . . . . . .

131

 

4.4

Self-tuned criticality . . . . . . . . . . . . . . . . . . . . . . . . . .

133

 

4.5

Motor-driven oscillations . . . . . . . . . . . . . . . . . . . . . . . .

134

 

4.6

Channel compliance and relaxation oscillations . . . . . . . . . . .

136

xxviii

 

 

4.7

Channel-driven oscillations . . . . . . . . . . . . . . . . . . . . . .

138

4.8

Hearing at the noise limit . . . . . . . . . . . . . . . . . . . . . . .

139

Course 4. Dynamic Force Spectroscopy

 

by E. Evans and P. Williams

145

Part 1: E. Evans and P. Williams

147

1 Dynamic force spectroscopy. I. Single bonds

147

1.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

147

 

1.1.1 Intrinsic dependence of bond strength on time frame

 

for breakage . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

1.1.2Biomolecular complexity and role for dynamic force

spectroscopy . . . . . . . . . . . . . . . . . . . . .

. . . . . 148

1.1.3 Biochemical and mechanical perspectives of bond strength . 150

1.1.4 Relevant scales for length, force, energy, and time .

. . . . . 153

1.2 Brownian kinetics in condensed liquids: Old-time physics

. . . . . 154

1.2.1 Two-state transitions in a liquid . . . . . . . . . . .

. . . . 155

1.2.2 Kinetics of first-order reactions in solution . . . . . .

. . . . 156

1.3 Link between force – time – and bond chemistry . . . . . .

. . . . 158

1.3.1 Dissociation of a simple bond under force . . . . . .

. . . . 158

1.3.2 Dissociation of a complex bond under force:

 

Stationary rate approximation . . . . . . . . . . . .

. . . . 159

1.3.3 Evolution of states in complex bonds . . . . . . . . .

. . . . 163

1.4Testing bond strength and the method of dynamic force

spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 164

1.4.1 Probe mechanics and bond loading dynamics . . . .

. . . . 165

1.4.2

Stochastic process of bond failure under rising force

. . . . 168

1.4.3

Distributions of bond lifetime and rupture force . . .

. . . . 169

1.4.4Crossover from near equilibrium to far from equilibrium

 

 

unbonding . . . . . . . . . . . . . . . . . . . . .

. . . . . . . 172

 

1.4.5 E ect of soft-polymer linkages on dynamic strengths

 

 

of bonds . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . 175

 

1.4.6

Failure of a complex bond and unexpected

transitions

 

 

in strength . . . . . . . . . . . . . . . . . . . .

. . . . . . . 177

1.5

Summary . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . 185

Part 2: P. Williams and E. Evans

186

2 Dynamic force spectroscopy. II. Multiple bonds

187

2.1

Hidden mechanics in detachment of multiple bonds . .

. . . . . . . 187

2.2

Impact of cooperativity . . . . . . . . . . . . . . . . .

. . . . . . . 188

2.3

Uncorrelated failure of bonds loaded in series . . . . .

. . . . . . . 191

 

2.3.1 Markov sequence of random failures . . . . . .

. . . . . . . 191

 

2.3.2

Multiple-complex bonds . . . . . . . . . . . . .

. . . . . . . 193

 

 

 

xxix

 

2.3.3

Multiple-ideal bonds . . . . . . . . . . . . . . . . . . . . . .

194

 

2.3.4

Equivalent single-bond approximation . . . . . . . . . . . .

195

2.4

Uncorrelated failure of bonds loaded in parallel . . . . . . . . . . .

198

 

2.4.1 Markov sequence of random failures . . . . . . . . . . . . .

198

 

2.4.2

Equivalent single-bond approximation . . . . . . . . . . . .

198

2.5

Poisson statistics and bond formation . . . . . . . . . . . . . . . .

199

2.6

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

203

Seminar 1. Polymerization Forces

 

 

by M. Dogterom

205

Course 5. The Physics of Listeria Propulsion

 

 

by J. Prost

215

1

Introduction

217

2

A genuine gel

218

 

2.1

A little chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . .

218

 

2.2

Elastic behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . .

220

3

Hydrodynamics and mechanics

220

 

3.1

Motion in the laboratory frame . . . . . . . . . . . . . . . . . . . .

220

 

3.2

Propulsion and steady velocity regimes . . . . . . . . . . . . . . . .

221

 

3.3

Gel/bacterium friction and saltatory behaviour . . . . . . . . . . .

223

4

Biomimetic approach

225

 

4.1

A spherical Listeria . . . . . . . . . . . . . . . . . . . . . . . . . . .

225

 

4.2

Spherical symmetry . . . . . . . . . . . . . . . . . . . . . . . . . .

226

 

4.3

Steady state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

227

 

4.4

Growth with spherical symmetry . . . . . . . . . . . . . . . . . . .

229

 

4.5

Symmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . . . .

229

 

4.6

Limitations of the approach and possible improvements . . . . . .

231

5

Conclusion

234

xxx

Course 6. Physics of Composite Cell Membrane and Actin Based Cytoskeleton

by E. Sackmann, A.R. Bausch and L. Vonna

237

1 Architecture of composite cell membranes

239

1.1The lipid/protein bilayer is a multicomponent smectic phase

with mosaic like architecture . . . . . . . . . . . . . . . . . . . . .

239

1.2The spectrin/actin cytoskeleton as hyperelastic cell stabilizer . . . 242

1.3 The actin cortex: Architecture and function . . . . . . . . . . . . . 245

2 Physics of the actin based cytoskeleton

249

2.1

Actin is a living semiflexible polymer . . . . . . . . . . . . . . . . .

249

2.2

Actin network as viscoelastic body . . . . . . . . . . . . . . . . . .

253

2.3Correlation between macroscopic viscoelasticity and molecular

 

 

motional processes . . . . . . . . . . . . . . . . . . . . . . . . . . .

258

3

Heterogeneous actin gels in cells and biological function

260

 

3.1

Manipulation of actin gels . . . . . . . . . . . . . . . . . . . . . . .

260

 

3.2

Control of organization and function of actin cortex

 

 

 

by cell signalling . . . . . . . . . . . . . . . . . . . . . . . . . . . .

265

4

Micromechanics and microrheometry of cells

267

5Activation of endothelial cells: On the possibility

of formation of stress fibers as phase transition of actin-network

 

triggered by cell signalling pathways

271

6

On cells as adaptive viscoplastic bodies

274

7

Controll of cellular protrusions controlled by actin/myosin

 

 

cortex

278

Course 7. Cell Adhesion as Wetting Transition?

 

 

by E. Sackmann and R. Bruinsma

285

1

Introduction

287

2

Mimicking cell adhesion

292

3

Microinterferometry: A versatile tool to evaluate adhesion

 

 

strength and forces

294

4

Soft shell adhesion is controlled by a double well interfacial

 

 

potential

294

 

 

 

xxxi

5

How is adhesion controlled by membrane elasticity?

297

6

Measurement of adhesion strength by interferometric contour

 

analysis

299

7

Switching on specific forces: Adhesion as localized

dewetting

 

process

300

8

Measurement of unbinding forces, receptor-ligand leverage

 

and a new role for stress fibers

300

9

An application: Modification of cellular adhesion strength

 

by cytoskeletal mutations

303

10

Conclusions

303

A

Appendix: Generic interfacial forces

304

Course 8. Biological Physics in Silico

 

 

by R.H. Austin

311

1

Why micro/nanofabrication?

315

Lecture 1a: Hydrodynamic Transport

319

1

Introduction: The need to control flows in 2 1/2 D

319

2

Somewhat simple hydrodynamics in 2 1/2 D

321

3

The N-port injector idea

328

4

Conclusion

333

Lecture 1b: Dielectrophoresis and Microfabrication

335

1

Introduction

335

2

Methods

337

 

2.1

Fabrication . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 337

 

2.2

Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 338

 

2.3

Electronics and imaging . . . . . . . . . . . . . . . . . .

. . . . . . 338

 

2.4

DNA samples . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 338

3

Results

339

 

3.1 Basic results and dielectrophoretic force extraction . . .

. . . . . . 339

4

Data and analysis

343

xxxii

5

Origin of the low frequency dielectrophoretic force in DNA

347

6

Conclusion

353

Lecture 2a: Hex Arrays

356

1

Introduction

356

2

Experimental approach

360

3

Conclusions

364

Lecture 2b: The DNA Prism

366

1

Introduction

366

2

Design

366

3

Results

367

4

Conclusions

372

Lecture 2c: Bigger is Better in Rachets

374

1

The problems with insulators in rachets

374

2

An experimental test

375

3

Conclusions

381

Lecture 3: Going After Epigenetics

382

1

Introduction

382

2

The nearfield scanner

383

3

The chip

384

4

Experiments with molecules

387

5

Conclusions

391

Lecture 4: Fractionating Cells

392

1

Introduction

392

2

Blood specifics

392

3

Magnetic separation

397

 

 

 

xxxiii

4

Microfabrication

398

5

Magnetic field gradients

399

6

Device interface

401

7

A preliminary blood cell run

406

8

Conclusions

409

Lecture 5: Protein Folding on a Chip

411

1

Introduction

411

2

Technology

412

3

Experiments

415

4

Conclusions

418

Course 9. Some Physical Problems in Bioinformatics

 

 

by E.D. Siggia

421

1

Introduction

423

2

New technologies

425

3

Sequence comparison

427

4

Clustering

430

5

Gene regulation

432

Course 10. Three Lectures on Biological Networks

 

 

by M.O. Magnasco

435

1

Enzymatic networks. Proofreading knots:

 

 

How DNA topoisomerases disentangle DNA

438

 

1.1

Length scales and energy scales . . . . . . . . . . . . . . . . . . .

. 439

 

1.2

DNA topology . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 440

 

1.3

Topoisomerases . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 441

 

1.4

Knots and supercoils . . . . . . . . . . . . . . . . . . . . . . . . .

. 444

 

1.5

Topological equilibrium . . . . . . . . . . . . . . . . . . . . . . .

. 446

 

1.6

Can topoisomerases recognize topology? . . . . . . . . . . . . . .

. 447

 

1.7

Proposal: Kinetic proofreading . . . . . . . . . . . . . . . . . . .

. 448

Соседние файлы в предмете Химия