Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
28
Добавлен:
15.08.2013
Размер:
248.94 Кб
Скачать

 

 

 

 

 

 

 

 

 

III.2.5

PALLADIUM-CATALYZED ARYL–ARYL COUPLING

321

TABLE 5. (Continued )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ArMX PhY

Cat.

ArPh

 

 

 

 

 

 

 

 

 

 

 

 

9:

 

 

 

 

Entry

 

 

 

 

 

 

Substrates

MX

Y

Catalyst

Yield (%)

Reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m-Mono

 

 

 

 

 

 

 

8

 

 

 

 

 

 

MX

Y

SnBu3

Br

Pd(PPh3)4

75

 

[38]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

MX

Y

B(OR)2

I

Pd(PPh3)4

95

 

[66]

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

MX

Y

B(OH)2

Br

Pd(PPh3)4

75

 

[59]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me3Si

 

 

 

 

 

 

 

 

 

 

aArranged according to the following order of substitution pattern in aryl electrophiles: p-monosubstitued arylmetal m-monosubstituted arylmetal. In cases where the substituent pattern is the same, the substituents are arranged according to increasing order of priority determined by the Cahn–Ingold–Prelog rule.

TABLE 6 Pdor Ni-Catalyzed Aryl – Aryl Coupling Using 3,5- Substituted Arylmetals or Aryl Electrophilesa

 

 

 

 

 

ArMX Ar Y

Cat.

 

Ar – Ar

 

 

 

 

 

 

 

9:

 

 

 

Entry

 

 

Substrates

 

MX

Y

Catalyst

Yield (%)

Reference

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

 

 

 

 

 

 

1

 

 

MX

Y

 

B(OH)2

I

PdCl2

65

[57]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

 

 

 

 

 

 

2

 

 

MX

Y

 

B(OH)2

Br

Pd(OAc)2

92

[67]

 

 

 

 

 

 

 

 

 

EtO

 

B(OH)2

Cl

Pd(dba)2 + Ligandb

94

[28]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P O

 

 

 

 

 

 

 

 

 

 

 

 

OEt

 

 

 

 

 

 

3

 

 

MX

Y

 

B(OH)2

Br

Pd(OAc)2, PPh3

86

[68]

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

Ot-Bu

 

 

 

 

 

 

 

 

 

 

 

N

t-Bu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

COOMe

 

 

 

 

 

 

4

 

 

MX

Y

 

B(OH)2

Br

Pd(OAc)2

66

[69]

 

 

 

 

 

 

COOMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Br

 

 

 

 

 

 

5

 

 

MX

Y

 

B(OH)2

Br

Pd(PPh3)4

67

[70]

 

 

 

 

 

 

Br

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aAryl electrophiles are arranged according to increasing order of priority determined by the Cahn–Ingold–Prelog rule. bLigand

Cy PO

Cy O

322

III Pd-CATALYZED CROSS-COUPLING

TABLE 7. Pdor Ni-Catalyzed Aryl–Aryl Coupling Using 3,4-Substituted Arylmetals or Aryl Electrophilesa

 

 

 

 

 

 

ArMX Ar Y

 

Cat.

 

Ar–Ar

 

 

 

 

 

 

 

 

 

9:

 

 

 

Entry

 

 

 

 

 

 

Substrates

 

 

 

 

 

 

 

 

 

MX

Y

Catalyst

Yield (%)

Reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

MX

Y

 

 

 

 

 

 

 

 

 

B(OH)2

Br

Pd(PPh3)4

87

[71]

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

MX

Y

 

 

 

NH2

 

 

 

B(OH)2

I

Pd(PPh3)4

52

[72]

BuO

 

 

 

 

 

MX

 

 

 

 

 

 

 

 

 

 

 

B(OH)2

Br

Pd(DIPHOS)2

95

[73]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

Y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MgBr

OMe

NiCl2(PPh3)2

99

[74]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

MX

Y

 

 

 

 

 

 

 

 

MgBr

Br

Ph2(dba)3 + IPrHClb

98

[27]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

B(OH)2

Br

Pd(OAc)2

99

[75]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Et

 

 

B(OH)2

Br

Pd(PPh3)4

95

[76]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MgBr

Br

NiCl2(dppp)

75

[77]

5

 

 

 

 

 

MX

Y

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

MX

Y

 

 

 

CN

 

 

 

SnBu3

I

Pd2(dba)3. CHCl3

72

[23]

 

 

 

 

 

 

 

 

 

 

 

CN

 

 

 

 

 

 

 

 

7

 

 

 

 

 

MX

Y

 

 

 

OH

 

 

MgBr

Br

Cl2Pd(dppf)

87

[43]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COOH

 

 

B(OEt)2

Br

Pd(OAc)2

99

[78]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

MX

Y

 

 

 

S

 

 

 

ZnCl

Br

PdCl2, K2CO3, H2O

100

[79]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B(OH)2

Br

Pd(PPh3)4

98

[80]

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

MX

Y

 

 

 

OMe

 

 

MgBr

Br

NiCl2(PPh3)2

99

[74]

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aAryl electrophiles are arranged according to increasing order of priority determined by the Cahn–Ingold–Prelog rule. bIPr 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene.

C. SYNTHESIS OF BIARYLS CONTAINING ONE OR TWO ORTHO SUBSTITUENTS VIA PdOR Ni-CATALYZED ARYL–ARYL COUPLING

Some representative examples of the synthesis of biaryls containing just one ortho substituent are shown in Table 8. The product yields are generally in the range of 70–100%, and Mg, Zn, B, and Sn are commonly used. Thus, one ortho substituent does not generally exert significant steric effects detrimental to the desired cross-coupling. Somewhat surprisingly, even those substituents that can chelate metals, such as COOMe[81] and CN,[26] have been successfully employed. All in all, the synthesis of biaryls containing only one ortho substituent appears to be closely analogous to those cases discussed in the preceding subsection.

III.2.5 PALLADIUM-CATALYZED ARYL–ARYL COUPLING

323

TABLE 8. Pdor Ni-Catalyzed Aryl–Aryl Coupling Providing Biaryls Containing One Ortho Substituenta

 

 

ArMX ArY

 

Cat.

 

ArAr

 

 

 

 

9:

 

 

 

Entry

 

Substrates

 

MX

Y

Catalyst

Yield (%)

Reference

 

 

 

 

 

 

 

 

 

 

 

1

 

MX Y

 

 

 

MgBr

Cl

Ni(triphos)ClPF6

53

[82]

 

 

 

 

MgCl

Cl

Pd(dppf)Cl2

79

[83]

Cl

2

3

4

5

6

7

8

MX Y

Br

MX Y

NO2

MX YAc

Me

MX YNO2

Me

MX YCOOMe

 

MX

Y

 

 

 

Me

 

 

CN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MX

Y

 

 

 

N

 

 

 

 

N

 

 

 

 

N

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N N

t-Bu

 

 

 

 

N

 

N

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

MgBr

Br

Pd(dppb)Cl2

75

[84]

B(OH)2

Br Pd(PPh3)4/Na2CO3

98

[85]

B(OH)2

OTf Pd(PPh3)4

98

[86]

SnMe3

OTf Pd2dba3. CHCl3

93

[87]

B(OH)2

Br

Pd2dba3

98

[87]

ZnCl

Br

PdCl2(PPh3)2/DIBAH

70

[9]

B(OH)2

I

Pd(OAc)2, K2CO3, H2O

98

[87]

ZnBr

Cl

NiCl2(PPh3)2

75

[26]

ZnCl

Br

PdCl2(PPh3)2

78

[88]

9

 

MX

Y

 

COOEt

ZnI

Br

Pd(PPh3)4

100

[81]

 

 

COOMe

 

 

 

 

 

 

 

 

MeO

 

 

 

 

CN

 

 

 

 

 

10

 

MX

Y

 

CN

SnMe3

I

Pd2dba3. CHCl3

75

[23]

 

 

OMe

 

 

 

 

 

 

 

 

(Continued )

324

III Pd-CATALYZED CROSS-COUPLING

TABLE 8. (Continued )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ArMX ArY

 

 

Cat.

ArAr

 

 

 

 

 

 

 

 

 

 

9:

 

 

Entry

 

 

Substrates

MX

Y

Catalyst

Yield (%)

Reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

 

MX

Cl

 

 

 

 

ZnCl

 

Ni(acac)2, dppf

86

[26]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CN

 

 

 

 

 

 

12

 

 

MX

Br

 

 

 

 

Sn(Bu)3

Pd(PPh3)4

95

[47]

 

 

 

 

 

COOH

 

 

 

 

 

 

13

 

 

MX

Cl

 

 

 

Me

MgBr

 

Pd(dba)2 + Ligandb

85

[84]

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

14

 

 

MX

I

 

 

 

 

 

 

 

TBAF, (allylPdCl) 2/(t-Bu)3P

85

[60]

 

 

 

 

 

 

Si

 

15

 

 

MX

I

 

 

 

 

ZnBr

 

Pd(dba)2, tfpc

76

[89]

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

S(O)2(CF2)3CF3

 

 

 

 

 

 

16

 

 

MX

Br

 

 

 

 

MgBr

 

Ni(acac)2

72

[90]

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17

 

 

MX

Br

 

 

 

Br

ZnCl

 

Pd(PPh3)4

76

[89]

 

3 : 1

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

 

 

MX

Cl

 

 

 

 

MgCl

 

Ni(acac)2, (i-PrO)3P

82

[91]

 

 

 

 

 

CN

 

 

 

ZnCl2

 

 

 

 

 

 

 

 

 

 

 

 

 

aAryl electrophiles are arranged according to increasing order of priority determined by the Cahn–Ingold–Prelog rule. bLigand

Cy PO

Cy O

ctfp tris(o-furyl)phosphine.

III.2.5 PALLADIUM-CATALYZED ARYL–ARYL COUPLING

325

The Pdor Ni-catalyzed reaction of 2,6-disubstituted arylmetals or aryl electrophiles appears to represent a point of deviation in that low product yields of 50% have been frequently reported, as indicated by the results shown in Table 9. Despite this unmistakable trend, the currently available data on this class of reactions are still limited and seemingly erratic or inconsistent. Consequently, they do not lend themselves to providing a reliable and useful set of generalizations. With the understanding that these cases share some critical features with the synthesis of biaryls containing three or four ortho substituents, it is recommended one consult the following subsection (Sect. D) for probing critical factors, such as metal countercations, leaving groups, and catalysts.

TABLE 9. Pdor Ni-Catalyzed Aryl – Aryl Coupling Providing Biaryls Containing Two Ortho Substituentsa

 

ArMX ArY

Cat.

Ar Ar

 

 

9:

 

 

 

 

 

 

Entry

Substrates

MX

Catalyst

Yield (%) Reference

 

2,4-Di-

 

 

 

1

 

 

 

 

MX

Br

 

 

 

 

2

 

 

 

 

MX

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

MX

MsO

 

 

 

CN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

MX

Br

 

 

 

Br

 

 

 

 

 

 

 

 

 

 

 

 

OMe

1:1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2,4,6-Tri-

 

 

 

 

 

 

5

 

 

 

 

MX

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

MX

Br

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

MX

Br

 

 

 

CHO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

MX

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

MX

Cl

 

 

 

 

OMe

 

 

 

 

 

 

 

B(OH)2

Pd(OAc)2, K3PO4

97

[92]

B(OH)2

NiCl2(PPh2Et)2/

94

[29]

 

zinc metal

 

 

B(OH)2

NiCl2(dppf)

56

[93]

B(OH)2

Pd(PPh3)4, Cs2CO3

50

[94]

B(OH)2

Pd(PPh3)4

92

[95]

MgBr

Ni complex

41

[96]

B(OH)2

Pd(PPh3)4

45

[40]

B(OH)2

NiCl2(dppf)

78

[25]

MgBr

Pd2(dba)3 . HCl

95

[27]

(Continued )

326

III Pd-CATALYZED CROSS-COUPLING

 

 

 

 

TABLE 9. (Continued )

 

 

 

 

 

 

 

 

ArMX ArY

Cat.

Ar Ar

 

 

 

 

 

 

9:

 

 

 

Entry

 

 

Substrates

MX

Catalyst

Yield (%)

Reference

 

 

2,4,5,6-Tetra-

 

 

 

 

 

 

 

 

 

 

CHO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

MX Br

SnBu3

Pd(PPh3)2Cl2

62

[97]

 

 

 

 

 

 

 

 

 

 

 

Br

11

12

13

14

15

16

17

18

Ph

 

OMOM

 

 

 

 

 

 

 

MX

Br

 

 

 

 

 

 

 

 

N

 

 

 

 

Ph

 

OMOM

 

 

 

 

 

 

 

 

 

 

 

 

 

MX I

MX Cl

MX TfO

MX TfO

O

N(i-Pr)2

 

 

 

MeOOC

Me3Si

 

 

I

 

 

N

 

MX

Me3Si

 

 

MeOOC

 

 

 

ZnCl Ni(PPh3)Cl2 49 [98]

B(OH)2

Pd(OAc)2, PPh3

92

[92]

MgBr

Pd2(dba)3 . CHCl3

87

[27]

MgBr

Cl2Pd(dppp)

94

[99]

MgBr

Ni(acac)

47

[53]

ZnCl

Ni(PPh3)4

20

[100]

 

 

MX

Br

 

 

SnBu3

Pd(PPh3)4

58

[38]

Cl

 

 

 

 

 

 

 

 

 

 

MeO

 

O

 

 

 

 

 

 

MX

I

 

O

B(OH)2

Pd(OAc)2, K2CO3

100

[101]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

III.2.5

PALLADIUM-CATALYZED ARYL–ARYL COUPLING

327

TABLE 9. (Continued )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ArMX ArY

Cat.

Ar Ar

 

 

 

 

 

 

 

 

 

 

9:

 

 

 

Entry

 

 

 

 

 

 

Substrates

 

 

 

 

 

 

 

 

 

 

 

MX

Catalyst

Yield (%)

Reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OEt

 

 

 

 

 

 

19

 

 

 

 

 

 

MX

TfO

B(OH)2

Pd(PPh3)4

96

 

[102]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

N

Cl

TBAF,

 

 

[103]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

MX

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Si

(allylPdCl)2/(t-Bu)3P 70

 

 

 

 

 

 

Me

 

 

 

O2N

 

 

 

 

 

 

21

 

 

 

 

 

 

MX

 

Br

MgBr

NiCl2

49

 

[104]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

Cl

 

 

 

 

 

 

22

 

 

 

 

 

 

MX

 

Br

SnBu3

PdBnCl(PPh3)2

95

 

[105]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NHC(O)Ot-Bu OHC

 

 

 

 

 

 

23

 

 

 

 

 

 

MX

 

Br

SnBu3

Pd(PPh3)Cl2

74

 

[106]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NHC(O)Ot-Bu

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

24

 

 

 

 

 

 

MX

 

Br

 

 

O SnBu3

Pd(OAc)2

63

 

[107]

 

 

 

 

 

 

 

 

 

MeO

 

N

 

C(O)Ot-Bu

 

OHC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MX

 

 

 

 

 

 

 

 

 

 

SnMe3

Pd(PPh3)4, CuBr

70

 

[103]

25

MeO

 

 

 

 

Br

 

 

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OHC

 

 

 

 

 

 

26

 

 

 

 

 

 

MX

 

 

 

I

MgBr

Pd(PPh3)4

66

 

[108]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

Me

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SiMe3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aAryl electrophiles are arranged according to increasing order of priority determined by the Cahn–Ingold–Prelog rule.

Examples of the synthesis of biaryls containing two aryl groups, each of which contains one ortho substituent, seem to be rather rare. In the synthesis of magnolol and ( )-monoterpenylmagnolol shown in Scheme 3,[18] Zn was reported to be more satisfactory than Sn. The latter reaction was reported to be accompanied by double bond migration to significant extents.

328

III Pd-CATALYZED CROSS-COUPLING

D. SYNTHESIS OF BIARYLS CONTAINING THREE

OR FOUR ORTHO SUBSTITUENTS

Biaryls containing three or four ortho substituents are discrete from the others in that they can exist as persistent atropisomers that are chiral. There are even a number of natural products containing such chiral biaryl moieties including michellamines A and B [109],[110] and vancomycin.[111] These compounds provide some of the ultimately challenging synthetic tasks. Specifically, two synthetic issues separate them from most of the other biaryls. One is dealing with three or four ortho substituents that exert strong steric hindrance to cross-coupling. Their electronic effects may also be significant in some cases. The other is controlling the absolute and relative stereochemistry of the atropisomers. Some noteworthy progress have been made recently along these lines. In recent synthesis of michellamines A and B,[17] Zn, B, and Sn were compared by using some model compounds. As the results shown in Scheme 2 indicate, both 1-iodo and 1- bromo derivatives of 2,4,6-tris(methoxy)benzenes are satisfactory cross-coupling partners in the Pd-catalyzed reaction with the 1-naphthylboronic acid derivative, whereas only the iodo derivative is satisfactory in the reaction of the 1-naphthylzinc derivative. Noteworthy is the complete failure observed with the 1-naphthyltin derivative.[17] Although these results represent just one study, the inferior reactivity of Sn as compared with Zn and/or B has been recorded in a growing number of more demanding cases of the Pd-catalyzed cross-coupling reactions, as discussed also in the following dozen or so sections in this part.

As indicated by the results shown in Tables 10 and 11, successful syntheses of biaryls containing three or four ortho substituents have indeed been reported by the use of Zn, B, and Mg. Although it is still premature to draw firm conclusions, areneboronic acids appear to lead to at least comparable and possibly even higher yields of the desired biaryls than arylmetals containing Zn or Mg, despite their significantly lower intrinsic reactivity. If true, this might stem from the facts that biaryls generally unassociated with delicate regioand/or stereochemical issues are thermally stable compounds and that areneboronic acids are much more thermally stable than the corresponding arylmetals containing Zn or Mg. These stability features must permit the formation of sterically hindered biaryls under forcing conditions with minimal complications arising from competitive side reactions including reagent decomposition.

In view of the significance of chiral biaryls, it may be predicted that many additional investigations along this line will be reported in the near future, and they should help provide a more definitive discussion of this topic.

The other important issue of enantioselective synthesis of chiral biaryls is discussed in Sect. III.2.16, and it is therefore not duplicated here.

E. SYNTHETIC APPLICATIONS OF THE PdOR Ni-CATALYZED

ARYL–ARYL COUPLING

Synthesis of biaryls via Pdor Ni-catalyzed aryl–aryl coupling has found many attractive applications in the synthesis of oligoand polyaryls and natural products containing biaryls. The former topic is discussed in Sect. III.2.17.2, and the latter is further supplemented in Table 1 of Sect. III.2.18.

 

 

 

 

III.2.5 PALLADIUM-CATALYZED ARYL–ARYL COUPLING

329

TABLE 10. Pdor Ni-Catalyzed Aryl–Aryl Coupling Providing Biaryls Containing Three

 

 

Ortho Substituents

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ArMX Ar'Y

Cat.

ArAr'

 

 

 

 

 

 

 

 

9:

 

 

 

 

Entry

 

Substrates

MX

Catalyst

Yield (%)

Reference

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

OHC

 

 

 

 

 

 

1

 

 

MX

Br

B(OH)2

Pd(PPh3)4

82

[112]

 

 

 

 

 

 

 

 

B(OH)2

Pd(PPh3)4

80

[113]

 

 

 

 

 

 

 

 

 

 

 

Cr(CO)3

MeO

CHO

2

 

MX

 

 

 

 

OMe

3

 

MX

 

 

 

OMe

4

 

MX

 

5 MOMOMX

6 OMX

7

O

MX

 

O

CHO

8 MX

9 MX

10 MX

I

MeO

TfO

MeO

MeO

TfO

MeO2C

Me

Y OMe

MeO

Me Bn

N

Me

BrOBn

BnO

HOH2C

BrOMe

Cr(CO)3

MeO OMe

Y

Cl

I

Cl

Br

 

B(OH)2

 

 

B(OH)2

 

 

B(OH)2

 

 

 

 

 

 

ZnCl

 

Y = I

 

B(OH)2

Y = I

 

SnBu3

 

Y = I

 

ZnCl

 

Y = Br

 

B(OH)2

Y = Br

 

SnBu3

 

Y = Br

 

 

 

 

 

SnBu3

 

 

 

SnBu3

 

 

 

B(OH)2

 

ZnCl

Y = I

B(OH)2

Y = Br

B(OH)2

Y = Cl

Pd(PPh3)4

73

[114]

Pd(PPh3)2Cl2

74

[115]

Pd(PPh3)2Cl2

0

[116]

Pd(PPh3)4

50

[17]

Pd(PPh3)4

79

[17]

Pd(PPh3)4

0

[17]

Pd(PPh3)4

16

[17]

Pd(PPh3)4

56

[17]

Pd(PPh3)4

0

[17]

Cl2Pd(PPh3)2

15

[117]

Cl2Pd(PPh3)2

21

[118]

Pd(PPh3)4

67

[119]

Ni(PPh3)4

93

[11]

Pd2(dba)3, P(t-Bu)3

97

[87]

Pd2(dba)3, P(t-Bu)3

93

[87]

B(OH)2

Pd(PPh3)4, Ba(OH)2

94

[114]

B(OH)2

Pd(PPh3)4, Ba(OH)2

56

[114]

(Continued )

330

III

Pd-CATALYZED CROSS-COUPLING

 

 

 

 

TABLE 10. (Continued )

 

 

 

 

 

 

 

 

 

 

 

ArMX Ar'Y

Cat.

 

 

 

 

 

 

 

 

9: ArAr'

 

 

Entry

 

 

 

 

Substrates

 

 

MX

Catalyst

Yield (%)

Reference

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

 

 

 

 

 

 

Br

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MX

Br

 

 

MgBr

NiBr2, (S)-PPFOMeb 89

[120]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

MeO

 

 

 

MeO

 

 

 

 

 

 

12

BnO

 

 

MX

Br

 

OMe

B(OH)2

Pd(PPh3)4

90

[121]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

OMe

MeO

 

 

 

 

 

 

13

 

 

 

MX

Br

 

 

B(OH)2

Pd(PPh3)4

86

[122]

 

 

 

 

 

 

 

 

 

 

 

 

 

Cr(CO)3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MOMO

aAryl electrophiles are arranged according to increasing order of priority determined by the Cahn–Ingold–Prelog rule.

b PPFOMe

 

PPh2

 

Fe

 

 

 

 

C

OMe

 

 

 

 

H

 

Me

 

 

 

TABLE 11. Pdor Ni-Catalyzed Aryl–Aryl Coupling Providing Biaryls Containing Four Ortho Substituents

 

 

 

ArMX Ar Y

Cat.

 

Ar – Ar

 

 

 

 

 

9:

 

 

 

 

 

 

 

 

 

 

 

Entry

 

 

Substrates

 

 

 

MX

Catalyst

Yield (%)

Reference

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

R = H

MgBr

Ni(PPh3)Cl2

55–79

[123]

 

 

 

 

 

 

MX

Br

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

R

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ZnCl

Ni(PPh3)Cl2

36

[124]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

MX

I

 

 

 

ZnCl

(CH3CN)2PdCl2

35

[124]

 

 

 

 

 

B(OH)2

Pd(PPh3)4

39

[124]

 

 

OEt

MeO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MX

Br

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

OMe

N

 

O

 

B(OH)2

Pd(PPh3)4, Na2CO3

73

[125]

 

 

 

 

 

 

 

 

 

 

 

N

Соседние файлы в папке Negishi E. 2002 Handbook of organopalladium chemistry for organic synthesis