Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
28
Добавлен:
15.08.2013
Размер:
238.6 Кб
Скачать

III.2.4 OVERVIEW OF OTHER Pd-CATALYZED CROSS-COUPLING PROTOCOLS

295

B.iii. Alkynylsilane

Alkynyl(trimethyl)silanes smoothly couple with alkenyl halides at room temperature in the presence of a palladium catalyst and TASF (Scheme 20).[13] The difference in reactivity between alkynylstannanes and -silanes was utilized in a Pd-catalyzed threecomponent cross-coupling reaction. Thus, the Pd-catalyzed sequential reaction of tributylstannyl(trimethylsilyl)ethyne first with an alkenyl halide and second with another alkenyl or aryl iodide in the presence of newly added TASF afforded conjugated dienynes or arylenynes (Scheme 21).[24]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5% [PdCl(η3-C3H5)]2 R

 

 

 

 

 

 

 

 

 

 

 

Br

TASF (1.3 equiv)

R

 

 

 

 

 

SiMe3

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THF, r.t.

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

R = Ph, n-Pent, HOCH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5% Pd(PPh3)4

 

 

 

R2I (1.0 mol)

Bu3Sn

 

 

 

 

 

 

SiMe3

 

R1I (1.0 mol)

 

 

 

TASF (2.4 mol)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THF, 50 °C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0.8 mol)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1I

 

 

 

 

 

 

 

 

 

 

AcO

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n-Bu

I

 

 

 

 

 

 

 

 

I

 

 

 

n-Hex

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

8386%

R1R2

I n-Pr

I

I

R2I I

n-Hex I

 

I

n-Oct

 

n-Hex

n-Pr I

 

 

80%

72%

58%

70%

63%

 

 

Scheme 21

 

 

A catalytic amount of CuCl was found to also activate alkynyltrimethylsilanes in the Pd-catalyzed coupling reaction with aryl and alkenyl triflates (Scheme 22).[25] The catalytic cycle is considered to involve the transfer of an alkynyl group from an alkynylsilane to Cu(I), then to Pd(II). A sequential Pd-catalyzed reaction of trimethylsilylacetylene gives unsymmetrical diarylacetylenes (Scheme 23).

 

 

 

 

 

2.5% Pd(PPh3)4

R1

 

 

 

SiMe3 + TfOR2

10% CuCl

 

 

 

 

 

 

 

DMF, 80 °C, 324 h

 

 

 

 

 

 

 

 

R1 = Ph

4-NC-C6H4

4-MeO-C6H4

2-thienyl

4-TBSO-C6H4

R2 = 4-MeCO-C6H4 4-NC-C6H4 4-t-Bu-cyclohexen-1-yl

Scheme 22

R1R2

5190%

296 III

Pd-CATALYZED CROSS-COUPLING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1OTf

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5% Pd(PPh3)4

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

SiMe3

Et3N

 

R1

 

 

 

 

SiMe3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DMF, 60 °C, 6 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2OTf

 

 

 

 

 

 

R1 = 4-MeCO-C6H4, R2 = 4-NC-C6H4

 

 

 

 

 

 

 

 

94%

 

10% CuCl

R1

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

R1 = 4-MeO-C6H4, R2 = 4-NC-C6H4

94%

 

80 °C, 12 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 23

B.iv. Alkylsilane

Pentacoordinated silicate TASF, one of the best activators of organosilicon compounds in the Pd-catalyzed cross-coupling reaction as we have seen, is found to be involved in the coupling reaction with aryl halides in the absence of other organosilanes to give methylated arenes (Scheme 24).[26] Recently, DeShong and co-workers also reported that tetrabutylammonium triphenyldifluorosilicate, another pentacoordinated silicate, is applicable for the phenylation of allyl benzoates[27] and aryl halides[28] in the presence of a palladium catalyst.

 

 

1.3% [PdCl(η3-C3H5)]2

(Et2N)3S+ (Me3SiF2)

IAr

 

MeAr

 

 

 

THF, 50 °C, 20 h

TASF

 

5986%

 

Ar = 1-Np

 

 

 

2-Np

 

 

4-MeCO-C6H4 (bromide)

 

 

4-NO2-C6H4

 

 

4-MeOCO-C6H4

 

 

3-MeOCO-C6H4

 

 

3-MeCOOCH2-C6H4

 

 

Scheme 24

 

Alkylsilanes activated in situ by TBAF are also applicable to the cross-coupling reaction with aryl halides (Scheme 25).[29],[30] The fact that the reaction requires excess amount of a fluoride ion for giving products in acceptable yields is ascribed to the trapping of the fluoride ion by coproduced SiF4, which is converted into (SiF5) or (SiF6)2 .

The cross-coupling reaction of an optically active alkylsilane gives us valuable information on the stereochemistry in transmetallation.[31] The reaction of (S)-1-phenyl-1- (trifluorosilyl)ethane (34% ee) with 4-acetylphenyl triflate in the presence of 5 mol % of Pd(PPh3)4 and TBAF (2 equiv) at 50 °C gave (S)-1-phenyl-1-(4-acetylphenyl)ethane of 33% ee with nearly complete retention of configuration. At higher temperatures, ee of the product decreased linearly, and above 75 °C inversion of configuration predominated (Scheme 26). Similar temperature dependency was observed also in the reaction of 3-formylphenyl triflate.

III.2.4 OVERVIEW OF OTHER Pd-CATALYZED CROSS-COUPLING PROTOCOLS

297

 

 

5% Pd(PPh3)4

 

 

Y(CH2)nSiF3

+ XAr

TBAF (4 equiv)

 

 

 

 

THF, 100

°C, 8

48 h

 

 

Y = H

Ar = 4-MeCO-C6H4

 

 

 

Ph

4-HCO-C6H4

 

 

 

CO2R

4-NO2-C6H4

 

 

 

COMe

2-Np

 

 

 

CN

Ph

 

 

 

2 n 6

4-Me-C6H4

 

 

 

2-NO2-C6H4

 

 

 

3-quinolinyl

5-MeOCO-fur-2-yl X = I, Br

Scheme 25

Y(CH2)nAr

3287%

 

Me

 

 

 

 

 

 

 

 

Me

 

 

 

TfO

 

 

 

5% Pd(PPh3)4

 

 

 

 

 

 

 

SiF3

 

 

 

TBAF (4 equiv)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RSiF3

 

 

COMe

 

 

 

 

 

 

COMe

 

 

 

 

 

 

 

 

 

 

 

 

 

from (S)-RSiF3 of 34% ee

 

 

 

 

 

 

 

 

 

 

Temperature (°C)

50

 

60

70

80

90

100

in THF

 

 

 

 

 

 

 

 

 

 

 

 

% ee (Configuration)

33 (S)

23 (S)

10 (S)

7 (R)

18 (R)

20 (R)

 

 

from (S)-RSiF3 of 38% ee

DMFTHF DMSOTHF

HMPATHF

 

Solvent

THF

 

 

 

 

 

(1:10)

(1:10)

 

(1:10)

at 60

°C

% ee (Configuration) 23 (S)

16 (S )

16 (S)

 

 

8 (R)

 

 

 

 

Scheme 26

The stereochemistry is also affected by the solvent polarity (Scheme 26). The reaction using (S)-1-phenyl-1-(trifluorosilyl)ethane of 38% ee at 60 °C resulted in retention (23% ee, S) in THF, but inversion (8% ee, R) in HMPA – THF (1:10). Higher temperature and polar solvents are considered to change the reaction mechanism of transmetallation from a four-centered transition state [SE2 (cyclic)] to a backside attack of the palladium(II) complex [SE2 (open)] (Scheme 27).

F

 

 

 

 

 

 

Pd(Ar)Ln

F4Si

 

Ph

F4Si

Ph

 

F

Me

H

 

 

 

 

Me

H

 

 

Pd(Ar)Ln

retention

 

inversion

 

 

Scheme 27

 

 

298

III Pd-CATALYZED CROSS-COUPLING

B.v. Allylsilane

Allyltrifluorosilanes undergo the cross-coupling reaction with aryl halides, an allyl acetate, or alkenyl triflates exclusively at the -carbon to give allylated products (Scheme 28).[32] The -selectivity is noteworthy, because the cross-coupling reaction using other allylmetals usually takes place via -attack.

F3SiR1

R2

R1 = R2 = H

R1 = Me, R2 = H

R1 = R2 = Me

25% Pd(PPh3)4 or

5% Pd(OAc)2/10% dppb TBAF (1.01.5 equiv) or TASF (1.0 equiv)

+ XR3

THF, 80100 °C, 546 h

4-MeCO-C6H4-I 2-NH2-C6H4-I 2-Br-C6H4-I 4-MeCO-C6H4-OTf 3-MeO-C6H4-I

AcO Ph

R1

R3

R2

5198%

OTf

OTf

CO2Et

Scheme 28

The reaction of optically active allyl(difluoro)phenylsilanes with aryl triflates affords optically active allylarenes with high stereoselectivities, wherein the absolute configuration of the newly generated chiral carbon can be controlled by the choice of a fluoride salt and the solvent polarity (Scheme 29).[33] Aryl and alkenyl triflates are effective coupling partners not only for allylsilanes but also for alkenyl-, aryl-, alkyl-, and alkynylsilanes[34] as we have been seen in some examples of the preceding sections.

R

 

 

 

 

R

Me

Me

 

+ TfO-2-Np

5% Pd(PPh3)4

 

 

+

 

 

°C, 30 h

 

PhF2Si

Me

60

2-Np

R 2-Np

 

 

 

 

 

 

R

Stereoselectivity

E/Z

Yield (%)

TASF (4 equiv), DMF

Me

99% invension

8.6

70

CsF (4 equiv), THF

Et

74% retention

42

50

 

 

 

 

Scheme 29

 

 

III.2.4 OVERVIEW OF OTHER Pd-CATALYZED CROSS-COUPLING PROTOCOLS

299

Bisphosphine ligands having a certain bite angle, however, change the regioselectivity of allylsilane coupling from - to -carbon (Scheme 30).[35] Retardation of a reductive elimination step by use of a dppe or dppp ligand is assumed, and this is considered to induce isomerization of the secondary ( )-allyl in an allyl(aryl)Pd(II) complex to a primary -allyl complex. The -selective reaction was applied to various aryl bromides or triflates (Scheme 31).

 

 

 

 

 

 

 

5% PdCl2L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5% L

 

 

 

 

 

 

 

 

 

Br

 

 

 

 

TBAF (3 equiv)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THF, 120 °C

 

 

 

 

 

 

 

Me

 

SiF3 +

 

 

Ac

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

 

 

Ac

γ

Ac

 

 

L

 

Time (h)

 

Yield (%)

 

 

α : γ

E/Z in α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph2PCH2PPh2

 

23

85

 

55:45

4.6:1

 

 

 

 

Ph2P(CH2)2PPh2

18

86

 

97:1

8.1:1

 

 

 

 

Ph2P(CH2)3PPh2

15

92

 

99:1

7.2:1

 

 

 

 

Ph2P(CH2)4PPh2

6

57

 

16:84

4.3:1

 

 

 

 

Ph2P(CH2)5PPh2

41

77

 

6:94

4.8:1

 

 

 

 

Ph3P

 

12

97

 

0:100

 

 

 

 

 

 

Scheme 30

 

 

 

 

 

 

 

 

 

 

 

 

 

5% PdCl2(dppp)

 

 

 

 

 

 

 

 

R

 

 

 

5% dppp

 

 

 

 

R

 

 

TBAF (3 equiv)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ X

 

Ar

THF, 120 °C, 12

50 h Me

 

 

 

Me

 

SiF3

 

 

 

 

 

Ar

 

R = H, Me

 

 

 

 

 

 

 

 

 

 

49100%

 

Ar = 4-MeCO-C6H4 4-NC-C6H4 2-MeO-C6H4 4-MeOCO-C6H4

X = Br, OTf

Scheme 31

The kind of fluoride ion activator and the leaving group in electrophiles affect the stereochemistry in the cross-coupling reaction of allylsilanes as exemplified with 2-cyclo- hexenyl(difluoro)phenylsilane (Scheme 32).[36]

300

 

III

Pd-CATALYZED CROSS-COUPLING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5% Pd(PPh3)4

 

 

 

 

 

 

 

 

 

SiF2Ph + X

 

 

 

 

F(2 equiv)

 

 

 

 

 

 

 

 

 

 

 

 

 

O 90 °C

 

 

 

 

 

 

O

 

 

 

 

64% ee

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chirality

 

 

 

 

F

 

 

 

 

 

 

 

 

 

 

 

X

Solvent

Time (h)

Yield (%)

% ee (Configuration)

Transfer (%)

 

I

TBAF

THF

3

84

52

(S)

81

(ret)

 

I

CsF

THF

108

39

22

(S)

34

(ret)

 

OTf

TBAF

THF

51

90

5

(S)

8

(ret)

 

OTf

CsF

CH2Cl2

21

17

24

(R)

38

(inv)

Scheme 32

B.vi. Synthetic Applications

The Pd-catalyzed cross-coupling reaction of organosilicon compounds is applied to the synthesis of biologically active compounds. Some examples are described in the following schemes: artificial HMG–CoA reductase inhibitor, NK-104 (Scheme 33)[37]–[39]; a precursor of a DNA topoisomerase inhibitor (Scheme 34);[40] and nucleosides (Scheme 35).[41]

Me2ClSiH (1.2 equiv)

0.5% t-Bu3P Pt(CH2=CHSiMe2)2O

O

O

 

 

 

 

 

 

 

O

 

O

 

 

r.t., 1 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2t-Bu

 

ClMe2Si

 

 

 

 

 

 

 

 

ArI (1.0 equiv)

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5% [PdCl(η3-C3H5)]2

 

 

O

O

 

 

 

 

 

TBAF (2.0 equiv)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THF, 60 °C, 0.5 h

 

Ar

80% (2 steps)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CF3CO2H (15 equiv)

 

 

ArI =

 

 

 

CH2Cl2, r.t., 16 h

 

 

Ar

OH

 

 

 

 

NK-104

67%

CO2t-Bu

CO2t-Bu

I

N

Scheme 33

MeO

I

MeO

 

 

5% [PdCl(η3-C3H5)]2

 

O

 

10% P(OEt)3

 

 

 

 

 

 

 

 

 

+

MeO

 

 

TBAF (1.2 equiv)

 

MeO

CO2Me (EtO)Me2Si

O

 

THF, 60 °C, 2 h

 

MeO

 

 

O

MeO

O

MeO

 

 

 

 

 

 

 

MeO

 

 

MeO

 

 

 

 

 

 

 

MeO

 

 

 

 

 

O

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2Me

 

 

 

 

 

 

 

 

 

NMe

 

MeO

 

 

 

 

 

MeO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

Scheme 34

III.2.4

OVERVIEW OF OTHER Pd-CATALYZED CROSS-COUPLING PROTOCOLS

301

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

MeO

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 34 (Continued )

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

O

 

Bz

 

 

 

I

 

 

 

 

 

 

Bz

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

2.5% [PdCl(η3-C3H5)]2

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O N

 

 

 

 

 

O N

 

 

 

 

 

 

TBAF (2.0 equiv)

 

BzO

+ F2MeSi

R

 

 

 

 

 

BzO

 

 

 

 

 

 

O

THF, 60 °C

O

 

 

 

 

 

 

 

 

 

 

 

 

 

OBz

 

 

 

 

 

 

 

 

 

 

 

OBz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6064%

 

Scheme 35

C. ORGANOGERMANIUM COMPOUNDS

Ikenaga et al.[42] reported that trimethyl(styryl)germanes coupled with arenediazonium tetrafluoroborates in the presence of a palladium catalyst (Scheme 36). Although the reaction proceeds smoothly under mild conditions, stereochemistry of the alkenylgermanes is not retained as was observed with alkenylsilanes shown in Scheme 2. The mechanism is ascribed to a carbopalladation route as discussed with alkenylsilanes.

Ph

 

ArN2+BF4

Ph

 

 

Ph

 

Ph

Ar

 

5% Pd(dba)2

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GeMe3

MeCN, 25 °C

 

 

Ar

 

Ar

 

 

 

contains 6%

 

Ar = Ph

A

 

 

 

B

 

C

 

 

 

 

4-Me-C6H4

 

 

 

 

 

 

 

 

 

 

 

of (Z)-isomer

 

 

 

 

from

52

: 48 :

0

 

 

 

 

 

4-Br-C6H4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8187% yield

 

 

 

 

 

 

 

 

4-NO2-C6H4

 

to

85 : 15 : 0

 

 

 

 

 

 

 

 

 

 

 

 

Ph

GeMe3

ArN2+BF4

 

 

 

A +

B +

C

 

 

 

10% Pd(dba)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

from

64

:

36

:

 

0

8596% yield

 

contains 18%

 

 

 

 

 

 

 

 

MeCN, 25 °C

 

to

88

:

12

:

 

0

 

of (E)-isomer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

ArN2+BF4

 

 

 

A +

B +

C

 

 

 

 

 

 

 

 

10% Pd(dba)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

:

0

:

 

0 8592% yield

 

 

Me3Ge

 

 

 

MeCN, 25 °C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 36

302

III Pd-CATALYZED CROSS-COUPLING

An alkyl, allyl, aryl, or alkynyl group on germanium in addition to an alkenyl group was applicable to the cross-coupling reaction with an aryl bromide (Scheme 37).[43] Kosugi and co-workers used organogermanes having a nucleophilic nitrogen activating center, which assists the transmetallation by nucleophilic coordination to germanium.

 

 

 

 

 

 

 

 

R

Yield (%)

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n-Bu

8

+ Br

Me

 

 

Ge

 

 

 

 

allyl

88

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

95

 

 

 

 

 

 

 

 

1% Pd3(dba)3 CHCl3

 

 

 

vinyl

82

4% PPh3, P(o-tol)3 or PPh(o-tol)2

R

 

Me

1-EtO-vinyl

59

THF, 120 °C, 24 h

 

 

PhC

 

C

67

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 37

D. ORGANOCADMIUM COMPOUNDS

Organocadmium compounds also couple with organic halides in the presence of a palladium catalyst. The reaction of arylcadmium chlorides with aryl or alkenyl halides was disclosed by Bumagin et al.[44] (Schemes 38 and 39). Similarly, an alkenylcadmium chloride couples with an alkenyl iodide as reported by Negishi et al.[45] (Scheme 40). Although the cross-coupling products are produced in good yields, homocoupling products derived from both substrates accompany in all cases.

 

 

 

 

1% PdCl2(PPh3)2

 

 

 

 

 

Ph CdCl

+

I

 

OMe

THFEt2O, 20

°C, 15 min

1.5

:

1

 

 

 

 

 

 

 

PhOMe + PhPh + MeOOMe

74%

 

 

 

 

21%

24%

 

 

 

 

 

Scheme 38

 

 

Me

 

 

 

CdCl

+ ClCOAr

1% PdCl2(PPh3)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THFEt2O, 020

°C,1520 h

 

 

 

 

 

 

 

 

 

 

 

 

Ar = Ph, 4-NO2-C6H4

 

 

 

 

 

 

Ar

 

 

 

 

 

 

 

Me

 

 

 

Me

 

Me

 

 

 

 

+

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5696%

 

 

 

 

1320%

 

 

Scheme 39

III.2.4 OVERVIEW OF OTHER Pd-CATALYZED CROSS-COUPLING PROTOCOLS

303

n-Hex

CdCl

+

I

n-Bu

5% Pd(PPh3)4

 

 

 

 

 

 

 

 

 

 

 

 

 

THF, 2123

°C, 1 h

 

 

1.5 : 1

 

 

 

 

 

 

 

 

 

 

 

n-Hex

 

n-Bu

+

n-Hex

+

n-Bu

 

 

 

 

 

n-Hex

 

 

n-Bu

 

 

86%

 

 

17%

 

8%

 

Scheme 40

E. ORGANOINDIUM COMPOUNDS

The Pd-catalyzed cross-coupling reaction of organoindium compounds was first reported in 1999.[46] The reaction was applied to triaryl-, trialkenyland trialkynylindiums, which coupled with aryl iodides, aryl triflates, or alkenyl triflates in high yields (Scheme 41). It is noteworthy that all of the organic groups on indium can participate in the coupling reaction.

 

 

 

 

 

3% PdCl2(PPh3)2 or

 

 

 

R13In +

PdCl2(dppf)

R1R2

 

 

 

 

 

 

X R2

THF, reflux, 0.57 h

 

 

 

 

 

 

 

1

:

3

 

 

8997%

 

 

 

 

 

 

 

R1 = Ph

 

 

4-Me-C6H4-I

 

 

 

CH2

 

CH

4-Ac-C6H4-OTf

 

 

 

 

 

PhC

 

C

4-t-Bu-1-cyclohexen-1-yl-OTf

 

 

 

 

 

 

 

TMSC C n-Bu

Me cyclopropyl

Scheme 41

F. ORGANOMERCURY COMPOUNDS

There have been many reports on the cross-coupling reaction of organomercury compounds, although their toxicity results in limited synthetic applications. Takagi and coworkers[47] reported the Pd-catalyzed reaction of dialkyland diphenylmercury with acyl halides (Scheme 42). Additional examples of this particular combination of substrates in addition to a carbonylative cross-coupling were reported later by Bumagin et al.[44],[48] (Schemes 43 and 44). The coupling reaction of organomercury compounds as applied also for the synthesis of biaryls (Scheme 45)[49],[50] and conjugated dienes (Scheme 46).[45]

304

III

Pd-CATALYZED CROSS-COUPLING

 

 

 

 

213% Pd(PPh3)4

 

R1R1

 

 

R12Hg + BrCOR2

 

 

R1COR2 +

 

 

 

 

 

HMPA, 060 °C, 0.512 h

 

 

 

R1

= Et, Ph R2 = Ph, n-Bu

3486%

<30%

 

 

 

Scheme 42

 

 

 

 

 

 

 

1% PdCl2(MeCN)2,

 

 

 

 

 

 

 

4-NO2-C6H4PdI(PPh3)2 or

R12Hg

 

 

 

 

 

PhPdI(PPh3)2

 

 

 

 

 

NaI or n-Bu4NI (4 equiv)

 

or

+ BrCOR

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

HgI

THFEt2O, acetone or benzene

 

 

 

 

R

 

 

 

 

020 °C, 560 min

R1 = 2-thienyl

R3 =

4-NO

-C

H

4

 

 

 

 

 

 

 

 

2

6

 

 

 

Ph

 

 

 

 

 

2-furyl

 

 

 

 

5-Me-2-thienyl

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

3-py

 

 

 

 

 

 

R2 = 4-Me-C6H4

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

n-Pr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 43

 

 

 

 

 

 

 

 

 

1% PdCl2(MeCN)2

 

 

 

 

 

 

 

 

 

CO (1 atm)

R1HgI + I

 

 

 

 

R2

 

n-Bu4NI (4 equiv)

 

 

 

 

 

 

 

 

 

 

 

HMPA, 20 °C, 1.510 h

 

 

 

 

 

 

 

 

 

R1 = Me, n-Pr

R2 =

4-Me-C6H4

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

n-Pr

 

 

 

 

 

 

R1COR3

or + R1R1 R2COR3

70100% <20%

R1

R2

O

6085%

 

 

 

Scheme 44

 

 

 

1% 4-NO2-C6H4PdI(PPh3)2

 

 

 

CO (1 atm)

 

 

 

NaI (2 equiv)

R1R2 + R1R1

R12Hg + I–R2

 

 

 

DMF, 2090 °C, 10120 h

 

 

 

R1 = 2-thienyl

R2 =

4-NO2-C6H4

6095% <20%

5-Me-2-thienyl

 

 

2-py

 

 

 

 

2-thienyl

 

 

 

 

2-NO2-3-py

 

Scheme 45

Соседние файлы в папке Negishi E. 2002 Handbook of organopalladium chemistry for organic synthesis