Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
26
Добавлен:
15.08.2013
Размер:
302.04 Кб
Скачать

IV.2.1.2 Double and Multiple Heck Reactions

STEFAN BRÄSE and ARMIN DE MEIJERE

A. INTRODUCTION

The multiple Pd-catalyzed couplings of oligohaloarenes and -alkenes (or perfluoroalkyland fluorosulfonates) with alkenes (Heck reactions) offer the possibility of constructing symmetrically oligosubstituted, highly unsaturated carbon frameworks in a single synthetic operation. The Heck reaction of diand oligoethenylarenes with diand oligohaloarenes can be applied to produce conjugated polyvinylenearylene-type polymers that may have important applications in the future. Comparable in scope and limitations to the related multiple Stille and Suzuki couplings, the ready accessibility of starting materials and the ease of removing by-products have made multiple Heck reactions particularly attractive for various synthetic applications.

In this section, a double (or multiple) Heck reaction is defined as a coupling of two (or more) alkene molecules with dior oligohaloarenes or -alkenes as well as a reaction of two (or more) dior oligohaloarenes or alkenes with one alkene molecule.

B. COUPLING OF OLIGOHALOARENES WITH ALKENES

The multiple coupling of oligohaloarenes with alkenes was described early on by Heck and Nolley in one of their first papers.[1] Twofold coupling of 1,4-diiodobenzene with styrene furnished the 1,4-distyrylbenzene in 67% yield; shortly afterwards, the double Heck couplings under palladium catalysis of 4,7-diiodofluorene, p-diiodoterphenyl, and p- diiodobiphenyl with various substituted styrenes were disclosed by Japanese chemists in a patent on the synthesis of dye brighteners.[2] Since then, a large number of ortho-, meta-, and para-dihaloarenes and -heteroarenes have been subjected to double Heck reactions with various alkenes (Tables 13, Scheme 1).

However, the substitution pattern on the arene is crucial for the success of the Heck reaction. When a second Heck coupling takes place in an ortho position of another alkenyl unit, cyclization of the intermediately formed -( -arylalkyl)palladium complex may occur, as formation of alkylideneindanes and alkylindenes, especially under classical Heck conditions with phosphines in the catalyst cocktail, was observed (Scheme 2, Table 1).

Handbook of Organopalladium Chemistry for Organic Synthesis, Edited by Ei-ichi Negishi ISBN 0-471-31506-0 © 2002 John Wiley & Sons, Inc.

1179

1180

IV

Pd-CATALYZED REACTIONS INVOLVING CARBOPALLADATION

 

 

TABLE 1. Twofold Heck Reactions on 1,2-Dihaloarenes

 

 

 

 

 

 

 

 

 

 

 

 

 

Arene

 

Alkene

 

Product

 

 

 

 

 

 

X

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

Yield

Ref-

 

X

R

 

 

R

 

Conditions

(%)

erence

 

 

 

 

 

 

 

 

 

 

X = I

 

R = Ph

 

R = Ph

 

 

Pd(OAc)2, Bu3N,

37

[1]

 

 

 

 

 

 

 

100 °C, 72 h

 

 

X = I

 

R = CO2Me

R = CO2Me

 

Pd(OAc)2, PPh3,

69

[7]

 

 

 

 

 

 

 

Et3N, 100 °C, 48 h

 

 

X = Br

 

R = Ph

 

R = Ph

 

 

Pd(OAc)2, Bu4NBr,

92

[8]

 

 

 

 

 

 

 

K2CO3, DMF,

 

 

 

 

 

 

 

 

 

100 °C, 5 d

 

 

X = Br

 

R = Ph

 

R = Ph

 

 

Pd(OAc)2, P(o-Tol)3,

59

[9]

 

 

 

 

 

 

 

Et3N, THF/MeCN,

 

 

 

 

 

 

 

 

 

55 °C, 1 d, 10 kbar

 

 

 

 

 

 

 

 

 

Pd(OAc)2, P(o-Tol)3,

65

[10]

 

 

 

 

 

 

 

Et3N, 150 °C

 

 

 

 

 

 

 

 

 

(microwave), 22 min

 

 

X = Br

 

R = CO2Me

R = CO2Me

 

Pd(OAc)2, Bu4NCl,

86

[11]

 

 

 

 

 

 

 

LiCl, K2CO3, DMF,

 

 

 

 

 

 

 

 

 

100 °C, 12 h

 

 

X = Br

 

R = Me (5 bar)

R = Me

 

 

Pd(OAc)2, Bu4NBr,

79

[12]

 

 

 

 

 

 

 

LiCl, KHCO3,

 

 

 

 

 

 

 

 

 

DMF, 100 °C, 12 h

 

 

X = Br

 

R = H (13.8 bar)

R = H

 

 

Pd(OAc)2, P(o-Tol)3,

78

[13]

 

 

 

 

 

 

 

Et3N, MeCN,

 

 

 

 

 

 

 

 

 

125 °C

 

 

X = Br

 

R =

Ph

R =

Ph

 

Pd(OAc)2, PPh3,

65

[14]

 

P

 

P

 

 

 

 

Me

O

Me

O

 

Et3N, DMF, 135 °C,

 

 

 

 

 

36 h

 

 

 

 

 

 

 

 

 

 

 

X = Br

 

R = 4-Py

 

R = 4-Py

 

 

Pd(OAc)2, PPh3,

80

[15]

 

 

 

 

 

 

 

Et3N, 100 °C, 3 d

 

 

X = Br

 

R = Fc

 

R = Fc

 

 

Pd(OAc) ,

74a

[16]

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

(n-Bu)4NBr, K2CO3,

 

 

 

 

 

 

 

 

 

DMF, 70 °C, 3 d

 

 

I

I

O

 

 

 

 

Pd(OAc)2, PPh3,

77

[17]

 

 

 

 

 

 

 

 

B

 

O

 

O

Et3N, MeCN, reflux

 

 

 

 

O

 

O BO

 

B O

 

 

 

 

 

 

16 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV.2.1.2 DOUBLE AND MULTIPLE HECK REACTIONS

1181

TABLE 1. (Continued )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yield

Ref-

Arene

Alkene

 

Product

Conditions

(%)

erence

 

 

 

 

 

 

 

Ph

 

Pd(OAc)2,Bu4NBr,

35

[18]

Br

 

 

K2CO3, LiCl, DMF,

 

 

 

 

 

100 °C, 3 d

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

Br

 

Ph

 

 

 

 

 

 

 

Pd(OAc)2, P(o-Tol)3,

46

[19]

 

 

 

DMF, 100 °C, 2 d

 

 

 

 

 

OH

O

 

 

b

 

 

I

Pd(OAc)2, PPh3,

56

[5]

 

 

 

 

 

 

 

 

 

i-Pr2EtN, DMF,

 

 

 

 

I

 

100

°C, 3 d

 

 

 

O

aFc = ferrocenyl.

bThe diketone was isolated.

R1

R1

X

X

 

X

 

 

R2

R1

 

R2

 

,, Pd

 

 

 

 

X

,,

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X = Br, I; R2 = aryl, alkyl, etc.

 

 

 

 

 

 

 

Scheme 1

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

R2

R1

 

 

R2

R1

,,

,,

 

 

 

 

 

 

 

 

 

Pd

 

 

 

 

 

and/or

 

R2

 

 

 

 

 

 

R2

 

 

Scheme 2

This reaction mode plays a dominant role in the sixfold Heck coupling of hexabromobenzene with styrenes yielding complex mixtures of various isomers of the sixfold coupling product. The analogous sixfold Suzuki and Stille coupling reactions with alkenylboronates and alkenylstannanes, respectively, gave the corresponding pure hexakisalkenylbenzene derivatives in high yields.[3] As shown by various experiments with o- and p-dihaloarenes, the second coupling step is generally accelerated by the first introduced alkenyl substituents in the ortho or para position, while a meta-alkenyl substituent does not significantly influence the rate of the second coupling.[4]

Yield (%) Reference

CO

Product

Me

 

2

 

1,3-Dihaloarenes:E=

Alkene (Conditions)

Reactionson

TwofoldHeck

 

TABLE2.

Arene

[7]

a 46

E

 

 

 

 

Br

E

 

 

 

N,

 

 

3

 

E

,Et

 

3

 

PPh

h)

 

,

100°C,19

 

2

 

(Pd(OAc)

I

 

Br

I

 

 

[20]

52

Bn 2 CO

C 2 BnO

NHBoc

OBn

I I

NHBoc

BocHN

NCl, 4 O Bu , 2 (Pd(OAc)

DMF,

h)

,

 

3

NaHCO

85°C,16

[21]

21

Ph

Ph

PhN,

3

Bu(Pd/C,

I I

115–120 °C, 3 h)

2 R

2 R

2 R

Br Br

[15]

[14]

77

92

 

R

-4Py

P(O)MePh

 

 

1

 

 

 

 

 

 

=

=

 

 

 

 

2

2

 

 

 

 

=H,R

=H,R

 

 

 

 

1

1

 

 

 

 

R

R

 

 

 

 

 

 

N,

 

 

 

 

 

3

 

 

 

,

C,3d)

,Et

C,°36h)

 

 

PPh,

PPh,

 

 

3

 

3

 

 

 

2

100°

2

DMF,135

 

 

(Pd(OAc)

Et

(Pd(OAc)

 

 

 

N,

 

 

 

 

 

3

 

 

1

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

[22]

 

b

 

n.r.

 

Et

 

2

 

=CO

 

2

 

=HOCHPh,R

 

1

 

R

 

,

 

3

 

,P(o-Tol)

MeCN)

2

(Pd(OAc)

Et

 

N,

 

3

[23]

94

Et

 

2

 

OH,R=CO

 

2

 

=CH

 

1

 

R

 

3

h)

1

,

 

o-Tol) 90°C,

,P(

MeCN,

2

(Pd(OAc)

Et

 

N,

 

3

[24]

56

=CN

 

2

 

Et,R

 

2

 

=CO

 

1

 

R

 

,

7d)

 

Tol)-o 120°C,

3

 

,P(

MeCN,

2

(Pd(OAc)

Et

 

N,

 

3

brominesubstituentdoesnottakepartinthecouplingundertheseconditions.

=notreported.

The

n.r.

a b

1182

 

 

 

Reference

 

 

Yield

(%)

2

 

 

Conditions

Et

 

 

 

Me,E =CO

 

 

 

2

 

 

 

Dihaloarenes:E=CO

 

 

Product

para-Substituted

 

 

 

1,4-andRelated

 

 

Alkene

TwofoldHeckReactionson

 

 

Arene

TABLE3.

 

 

 

 

 

[1]

 

 

[2]

 

[25]

 

 

[26]

 

 

 

67

 

 

a

11

 

 

76

 

 

 

 

 

n.r.

 

 

 

 

 

2 N,

 

h

 

 

2

N,

°C,

2 NCl,

DMF,,

 

h16

 

 

 

3

 

 

 

 

 

 

 

3

 

 

 

 

 

,

100°C,72

DMFPd,

,

Et,

DMF,100 h17

,

K

 

800

Pd(OAc) Bu)-n(

Pd(OAc)

Tol)-oP(

Pd(OAc) Bu)-n(

 

3

 

 

 

 

 

 

4 CO

C, °

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

-4-t-Bu

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

Ph

H

 

 

Ph

 

OR

 

 

C

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

6

 

Ph

RO

 

 

 

4

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

-Bu-4-C

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

4--t-Bu

Ph

2

 

 

Ph

 

NMe

 

6

 

 

 

 

 

OR

 

 

 

4

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

C

 

 

 

O

 

 

 

 

 

 

 

 

^ =

 

 

 

 

-4-I

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

I

6

I

 

I

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

I

I

H

I

 

 

6

 

 

 

 

 

 

4-I-C

 

 

 

 

[7]

 

 

32

 

 

,

N,

h

2

3

100°C,48

Pd(OAc)

PPh

 

Et ,

 

 

3

 

E

E

E

I

I

[27]

 

 

 

[28]

(Continued)

89

 

 

 

62

 

 

 

2:1,

 

 

3

 

 

 

 

 

N,

,

,

N/MeCN

70°C,70h

Pd(OAc),2

,Et

2

3

3

Pd(OAc)

Tol)-P(o

Et

Tol)P(-o h60C,110°

 

 

3

 

 

 

 

E

 

OMe

OMe

 

 

 

 

OMe

OMe

OMe

 

 

MeO

MeO

 

 

MeO

 

E

MeO

MeO

 

 

 

 

E

OMe

OMe

OMe

I

OMe

OMe

Br

 

MeO

I

MeO

 

Br

MeO

1183

Yield (%) Reference

Conditions

Product

Alkene

3.(Continued)

Arene

TABLE

 

55 [20]

,

 

DMF,

2 NCl,

3 h

Pd(OAc) Bu)-n(

,

NaHCO C,85°16

 

4

 

 

 

Bn

 

 

2

 

 

CO

 

 

BocHN

BocHN

2

 

 

C

 

 

BnO

 

NHBoc

OBn

O

I

I

81 [21]

N,

h

3

3

Pd/C,(n-Bu)

115–120°C,

Ph

Ph

Ph

I

I

[18]

[29]

61

 

 

97

 

 

 

 

74

 

 

 

 

 

 

 

,

 

d

 

N,

h

 

CO °C,5

 

Et,

24

 

 

,

 

3

 

2 NBr,

3

Pd(OAc),2

 

–100120C,°

2

3

Pd(OAc)

Bu)-n(

LiCl,K DMF,110

P(-oTol)

 

4

 

 

 

 

Ph

R

Ph

 

,

 

2

Ph

NO

CN,H, C

 

29

 

H

 

10

 

2

 

R SO

Br

Br

R

Br

Br

70 [30]

 

,

 

 

3

5h

2 CO

,

2

 

)

 

(PPh

N,K C,°

3

 

 

2

3 O,100

PdCl

Bu)n(-

H

 

 

2

Ph

Ph

Ph

I

I

[31]

85

 

 

 

2

,

 

 

]

3

h

3 CO

 

[P(o-Tol)

N,K

°C,6

 

2

 

2

3 O,100

PdCl

Bu)n(-

 

H

 

 

 

2

Ph

Ph

Ph

Br

Br

1184

97 [30],[31]

, 3 -oTol)

P(, 2 PdCl

Ph

,

 

3

3h

CO

K

C,°

2

 

N,

100

3

Bu)-n(

H

 

O,

 

2

Ph

Ph

Br

Br

72 [32]

,

 

 

2

 

 

)

DMF,

24h

(PPh

3

 

 

2

N,

130°C,

PdCl

Et

 

3

 

E

E

O

OEt

OTf

TfO

[14]

[33]

85

39

,

 

 

 

 

3

 

 

 

 

,PPh

DMF,

h

2

Pd(OAc)

Et

135°C,36

 

N,

 

 

 

3

 

 

 

O

 

Me

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

P

 

Ph

O

Ph

O

 

P

 

Me

I

I

 

,

 

 

 

3

 

 

 

,PPh

MeCN,

h

 

2

 

Pd(OAc)

Et

125°C,24

 

 

N,

 

 

 

3

 

Ph

 

2

 

P(O)Ph

 

(O)P 2 Ph

Ph

 

Ph

 

P

 

O

 

 

 

 

Br

Br

21 [34]

2

NCl,

,

BnEt

Pd(OAc)

 

3

I

I

82 [35]

 

N,

 

KOAc,25°C, d10

3

h6

PdCl 80DMF,°C,

 

Bu)-n(

 

 

,

 

 

2

 

Ar

Ar

^ = Ar

N

I

I

[36]

 

 

(Continued)

b

 

 

 

42

 

 

 

,

MeCN,

 

 

2

 

h1

(PPh

 

)

 

 

 

3

 

 

 

2

N,

 

80°C,

PdCl

Et

 

 

3

 

 

 

Et

 

 

 

2

 

 

CO

C 2 EtO

Et 2 CO

Br

I

1185

Yield (%) Reference

Conditions

Product

Alkene

3.(Continued)

Arene

TABLE

 

[37]

 

 

c

 

 

90

 

 

 

N,

h

2

3

5

3

C,°

,

Et

 

Pd(OAc)

,

DMF,80

P(o-Tol)

Ph

OHept

RO

Ph

Me

2

SO

59 [20]

, 2 Pd(OAc)

NHBoc

NCl,

DMF,,

 

3 h

Bu)-n(

NaHCO

C,85°16

4

 

 

 

 

Bn

 

 

2

 

 

CO

BocHN

C 2 BnO

Ph

NHBoc

OBn

O

N

 

 

 

Et

 

 

 

=

 

I

 

R

 

 

 

I

OHept

 

 

RO

 

 

 

I

 

I

 

24 [38]

2 NBr,

,

Bu)-n(

Pd(OAc)

 

4

Fc

Fc

Br

DMF,

d

3

3

,

 

CO °C,

2

70

K

Fc

Br

[39]

 

 

 

 

 

 

 

 

74

 

 

 

 

 

 

 

 

 

 

N, °C

 

 

 

 

 

 

3

120

 

 

 

 

,

 

Et,

 

 

 

 

2

3

DMF,100

 

 

 

 

Pd(OAc)

P(o-Tol)

 

 

 

 

 

 

 

 

 

 

 

in12%yield.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BrBr

 

reported.not=n.r.

productmonosubstitutionThe(iodinereplaced)wasisolatedin22%yield. products.couplingofyieldTotal Themono-α-substitutedstyrenewasisolated

ferrocenyl.=Fc

 

 

bar)(30

 

 

 

 

 

 

 

 

 

 

a

b

c

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1186

IV.2.1.2 DOUBLE AND MULTIPLE HECK REACTIONS

1187

The primary coupling product of 1,2-diiodobenzene with allyl alcohol, a dicarbaldehyde, underwent an intramolecular aldol condensation under the reaction conditions (Scheme 3).[5]

OH

 

O

 

 

 

 

I Pd(OAc)2, Et3N

 

 

 

 

 

CHO

 

 

 

 

 

 

80 °C, 44 h

 

 

 

H

H 81%

I

O

Scheme 3

Double and even triple Heck–Diels–Alder cascade reactions involving bicyclopropylidene and 1,4-diiodo- or 1,3,5-triiodobenzene, respectively, have been accomplished. In these sequences, the carbopalladation across the highly strained alkene is followed by a cyclopropylmethyl to homoallyl rearrangement with concomitant -hydride elimination to yield an allylidenecyclopropane, which subsequently undergoes a smooth [4 2] cycloaddition to furnish the spiro[5.2]octene moiety (Scheme 4).[6]

 

 

I

 

 

 

 

 

MeO2C

 

 

 

 

 

 

Pd(OAc)2, PPh3,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bu4NCl, K2CO3,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

+

CO2Me MeCN, 80 °C, 2 d

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

64%

 

 

 

 

 

 

 

CO2Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2Me

 

 

 

X

 

 

Pd(OAc)2, PPh3,

 

 

 

 

 

 

 

Bu4NCl, K2CO3,

 

 

 

 

 

 

 

 

 

 

+

 

 

+

 

 

MeCN, 80 °C, 2 d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2Me

 

 

 

 

 

 

 

 

 

 

X = Br: 34%

 

 

 

 

X

X

 

 

 

 

 

 

 

X = I: 72%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MeO2C

 

CO2Me

 

 

 

 

 

 

 

 

 

Scheme 4

In later studies by Heck and co-workers,[7] extension to threefold and higher multifold couplings with the corresponding oligoiodoarenes failed, and only major fractions of reduced starting materials were observed. This drawback was completely overcome by applying the Jeffery protocol,[40] that is, with a base like potassium carbonate in the presence of a tetrabutylammonium halide.[41],[42] Under these conditions, three alkene units and more can be attached to an arene ring in excellent yields (Tables 4 and 5).

1188

IV Pd-CATALYZED REACTIONS INVOLVING CARBOPALLADATION

TABLE 4. Threefold Heck Reaction on 1,2,3-, 1,2,4-, and 1,3,5-Trihaloarenes: E = CO2Me, Fc = Ferrocenyl

 

Arene

 

 

 

 

 

 

 

 

 

Yield

Ref-

 

Alkene

Product

 

 

Conditions

(%)

erence

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

E

 

 

Pd(OAc)2, PPh3,

52

[7]

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

E

Et3N, 100 °C, 12 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

Br

 

 

 

 

 

 

Br

R

 

R

Pd(OAc)2,

46a

[16]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(n-Bu)4NBr, K2CO3,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DMF, 2 h, 60 °C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Br

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

Fc

 

 

 

 

 

 

 

R = Fc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4-Py

 

 

 

R = 4-Py

 

 

2-Py

 

 

 

R = 2-Py

 

 

 

 

 

 

 

 

 

 

R = H

(8 bar)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

R = Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C H

-4-OMe

 

R = C6H4-4-OMe

6

4

 

 

 

 

 

 

 

 

 

 

 

 

 

Br

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

Br

 

 

Br

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X X = H, NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

R

 

 

Br

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Br

 

 

Br

R

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pd(OAc)2, PPh3,

70

[43]

Et3N, 100 °C, 3 d

(60)

([15])

Pd(OAc)2, K2CO3,

92

[44]

(n-Bu)4NBr, DMF,

 

 

100 °C, 5 d

 

 

Pd(OAc)2,

71

[45]

P(o-Tol)3, Et3N,

 

 

DMF, 125 °C

 

 

Pd(OAc)2,

82

[4]

(n-Bu)4NCl, K2CO3,

 

 

LiCl, DMF, 110 °C,

 

 

30 h

 

 

Pd(OAc)2, PPh3,

>40

[43]

Et3N, 100 °C, 3 d

 

 

Pd(OAc)2,

56

[8]

(n-Bu)4NBr, K2CO3,

X = H

 

DMF, 100 °C, 7 d

 

 

Pd(OAc)2,

66

[4]

(n-Bu)4NCl, K2CO3,

X = NO2

 

LiCl, DMF, 100 °C,

 

 

4 d

 

 

Pd(OAc)2,

58

[11]

(n-Bu)4NCl, K2CO3,

 

 

LiCl, DMF, 3 d,

 

 

90 °C

 

 

CO2t-Bu

R = CO2t-Bu

Соседние файлы в папке Negishi E. 2002 Handbook of organopalladium chemistry for organic synthesis