Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
26
Добавлен:
15.08.2013
Размер:
105.97 Кб
Скачать

RI + Et2Zn

cat. Pd

RZnI

 

IV.11 Palladium-Catalyzed

Carbozincation

PAUL KNOCHEL

A. INTRODUCTION

The carbopalladation is a central reaction in organopalladium chemistry and is extensively presented in Part IV. In most reactions, a discrete organopalladium intermediate adds to a double or triple bond. In this section, the reaction of an alkyl iodide with diethylzinc in the presence of a palladium(0) catalyst is presented. Such reaction conditions generate an alkyl radical that readily adds intramolecularly to a double bond, leading to an organozinc derivative (Scheme 1). The combination of a radical cyclization with the formation of an organometallic product allows new synthetic applications that will be discussed. Closely related Ni-catalyzed cyclizations will also be briefly presented.

B. MECHANISTIC STUDIES

The iodine–zinc exchange[1],[2] is a convenient method for preparing diorganozincs. It is catalyzed by copper(I) salts[2] and proceeds at temperatures between 50 and 60 °C. Other metallic salts catalyze this exchange reaction and especially palladium(II) salts give excellent results, allowing the conversion of octyl iodide to octylzinc iodide (and not dioctylzinc as shown by gravimetric analysis)[3] (Scheme 2). Functionalized primary alkyl iodides such as EtO2C(CH2)3I or NC(CH2)3I react within 1 0 – 30 min at 25 °C ( 90% yield) without the formation of any -hydride elimination product. In order to clarify the mechanism of the reaction, other precursors were used. It was found that alkyl tosylates or mesylates do not react. The reaction is inhibited by small amounts of nitrobenzene and does not proceed with Me2Zn. The exchange reaction is also very slow in ether. The treatment of either exo- or endo-7-iodobicyclo[2.1.0]heptane[4] with Et2Zn (ca. 2 equiv) in the presence of PdCl2(dppf) in THF furnishes the exo-substituted bicyclic organozinc reagent, which was allylated in a stereoconvergent manner, suggesting a radical to be a reaction intermediate (Scheme 3).

The insertion of Pd(0) into an alkyl iodide may therefore proceed via a radical pathway.[5],[6] The fast oxidative insertion may also indicate that a palladate species[7] such as 1 may be responsible for an electron transfer reaction[8] (Scheme 4). By using 5-hexenyl

Handbook of Organopalladium Chemistry for Organic Synthesis, Edited by Ei-ichi Negishi ISBN 0-471-31506-0 © 2002 John Wiley & Sons, Inc.

1651

1652

IV Pd-CATALYZED REACTIONS INVOLVING CARBOPALLADATION

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Et2Zn

 

 

 

 

 

 

 

 

 

 

 

PdCl2L2

 

 

 

 

 

 

ZnI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1

 

 

Et2Zn, 50 °C, 12 h

 

Et2Zn, THF, 25 °C, 2 h

 

 

Oct2Zn

 

 

Oct-I

 

 

Oct-ZnI

 

CuI (0.3 mol %)

PdCl2(dppf) (1.5 mol %)

 

 

 

 

H2C=CH2 H3C CH3

Scheme 2

I

 

H

 

Et2Zn, Pd(0) cat.

 

Et2Zn, Pd(0) cat.

H

 

 

 

ZnI

 

 

 

 

H

H

H

H

exo/endo = 96:4

 

 

 

 

endo

1.CuCN 2 LiCl

2.COOEt Br

 

 

 

 

 

 

 

 

 

 

H

COOEt

 

 

 

 

 

 

 

 

 

H

60%

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

Scheme 3

 

 

Et2Zn

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pd(0)

 

EtPd ZnEt

 

 

 

 

 

EtPd + R

 

 

EtZnI

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4

 

H

I

H

H exo

EtPd R

iodide as a substrate, a radical cyclization occurs, affording cyclopentylmethylzinc iodide (Scheme 1). This synthetic procedure allows one to perform radical ring closures[9] but affords as a product an organometallic species (organozinc halide) that can be used to form further carbon–carbon bonds. The stereoselectivity observed in the ring closure follows Beckwith rules[10] and is also stereoconvergent. Thus, the cyclization of the iodides 2a and 2b provides only the trans-product via a chair transition state such as 4

(Scheme 5).

A complete trans-stereoselectivity is observed between C(1) and C(2) of products 3a-b. The cyclization leads as expected[10] to lower stereoselectivity for the ring closure, affording the allylated product 5 as a cis/trans mixture of 78:22. This selectivity can dramatically be improved by using the 3-substituted secondary alkyl iodide 6. Although

H

I Et2Zn (2 equiv)

RO

PdCl2(dppf) 1.5 mol % 25 °C, 20 h

2a: R = Bn

2b: R = Bz

IV.11

PALLADIUM-CATALYZED CARBOZINCATION

1653

 

 

 

 

 

 

 

EtO2C

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

99:1

 

 

 

 

 

 

 

 

 

 

 

 

1. CuCN 2 LiCl

RO

 

RO

H

 

 

 

 

 

 

COOEt

 

 

67%

 

 

 

 

 

 

 

H H

2.

 

 

 

 

 

Br

3a: R = Bn 73%

 

 

4

 

 

 

 

3b: R = Bz 47%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 5

 

 

 

 

 

 

6 is used as a 1:1 mixture of diastereoisomers, only one stereoisomer 7 is obtained. Its formation is easily rationalized by assuming a chair transition state such as 8 (Scheme 6).[4],[11] The stereoconvergence of the reaction supports the radical mechanism of the ring closure.

Et2Zn (2 equiv)

Me

PdCl2(dppf)

I

1.5 mol %

25

°C, 2 h

 

Et2Zn (2 equiv)

BnO I

PdCl2(dppf)

Me

1.5 mol %

25

°C, 5 h

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EtO2C

 

 

 

 

 

 

 

 

 

 

 

1. CuCN 2 LiCl

 

 

 

 

 

 

 

Me

 

 

 

 

 

78:22

 

 

 

 

H

 

 

 

 

COOEt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

Br

 

Me

 

 

 

 

 

H

 

 

 

 

 

5

80%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EtO2C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

99:1

 

 

 

 

 

 

 

H

 

 

 

95:5

 

 

 

 

 

1. CuCN 2 LiCl

 

 

 

 

 

 

 

 

 

 

 

Me

 

BnO

Me

 

 

 

 

 

 

BnO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

 

COOEt

 

 

 

 

 

 

 

 

H H

 

 

Br

 

 

 

 

 

 

 

 

 

 

 

 

7 67%

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 6

 

 

 

 

 

 

 

 

 

 

 

 

C. SCOPE AND LIMITATION OF THE CYCLIZATION

The cyclization of 4-substituted 5-hexenyl iodides proceeds well, leading to cyclopentylzinc iodides that can be trapped with various electrophiles such as 3-iodo-2-cyclohexenone, iodine, acid chlorides, allylic halides, and ethyl propiolate (carbocupration) (Scheme 7).[4]

Various substitution patterns allow a successful cyclization. Also, a range of functional groups like esters or nitriles are tolerated in the ring closure (Scheme 8).

The presence of an oxygen functionality (O-centered leaving group) is also compatible with the reaction conditions and the 2-pivaloyloxyalkyl iodide 9 leads after allylation to the expected cyclopentane derivative 10 (Scheme 9).[4]

1654

IV Pd-CATALYZED REACTIONS INVOLVING CARBOPALLADATION

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

1. CuCN 2 LiCl

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I2

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

Et2Zn, THF

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

25 °C, 2h

 

 

 

 

1. CuCN 2 LiCl

Ph

 

 

 

 

 

 

 

PdCl2(dppf)

 

ZnI

 

 

 

 

 

CO2Et

 

CO2Et

 

 

 

 

2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5 mol %

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

>98% trans

 

 

 

 

 

 

 

 

 

 

64% >95% E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. CuCN 2 LiCl

 

 

1. CuCN 2 LiCl

2. CO2Et

 

 

 

 

 

 

 

 

 

 

 

 

Br

Ph

 

 

2. PhCOCl

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2Et

Ph

O

73%

76%

Scheme 7

I

 

 

 

Et2Zn (2 equiv)

 

 

 

 

 

 

 

 

1. CuCN 2 LiCl

 

 

 

 

 

 

 

 

 

ZnI

 

 

 

 

 

 

PdCl2(dppf )

 

 

 

 

 

 

 

 

 

CO2Et

 

 

 

 

 

 

 

1.5 mol %

 

 

 

 

 

 

2.

 

Br

 

CO2Et

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25 °C, 2 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FG

 

 

 

 

 

 

 

FG

 

 

 

 

 

 

 

 

 

 

FG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FG = CN 83%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FG = OCOt-Bu 62%

 

I

 

 

 

 

 

ZnI

 

1. CuCN 2 LiCl

 

 

Bu Ph

 

Et2Zn (2 equiv)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bu

PdCl2(dppf )

 

 

 

Bu

 

 

2.

 

 

NO2

 

 

 

NO2

1.5 mol %

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25 °C, 2 h

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

81%

Scheme 8

IV.11 PALLADIUM-CATALYZED CARBOZINCATION

1655

I

E

Et2Zn (2 equiv)

 

E PdCl2(dppf )

1.5mol % 25 °C, 2 h

E = CO2Et

R

I

Et2Zn (2 equiv)

PdCl2(dppf ) 1.5 mol % 25 °C, 2 h

R = Me, Et, c-Hex

R

I

Et2Zn (2 equiv)

PdCl2(dppf ) 1.5 mol % 25 °C, 2 h

R = (CH2)4OAc, Et, (CH2)3CN

R

I

Et2Zn (2 equiv)

PdCl2(dppf ) 1.5 mol % 25 °C, 2 h

R = (CH2)4OAc, (CH2)3CN

OAc

I

Et2Zn (2 equiv)

PdCl2(dppf ) 1.5 mol % 25 °C, 2 h

 

1. CuCN 2 LiCl

E

 

 

 

 

 

2.

 

CO2Et

 

E

73%

 

 

 

 

Br

 

CO2Et

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E = CO2Et

 

 

 

 

 

 

 

 

 

R

 

 

1. CuCN 2 LiCl

 

 

 

 

 

 

 

 

 

 

 

 

O

 

2.

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6281%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

cis/trans ca. 70:30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

1. CuCN 2 LiCl

 

 

 

2.

 

COOEt

 

 

 

 

 

 

 

Br

 

CO2Et

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7587%

 

 

 

 

 

 

 

 

 

cis/trans

ca. 78:22

 

 

 

 

 

 

 

 

 

R

 

 

1. CuCN 2 LiCl

 

 

CO2Et

 

2.

 

 

 

CO2Et

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5171% cis/trans ca. 78:22

OAc

1. CuCN 2 LiCl

 

 

2.

 

 

 

 

 

 

 

 

Cl

OAc

AcO

 

 

 

 

52% cis/trans 77:23

Scheme 8 (Continued )

 

 

 

 

EtO2C

 

I

Et2Zn

 

ZnI

1. CuCN 2 LiCl

80:20

OPiv

 

 

 

CO2Et

 

 

PdCl2(dppf )

OPiv

 

 

1.5 mol %

 

2.

 

OPiv

 

 

Br

 

25 °C, 2 h

 

 

 

 

 

 

 

9

10 87%

Scheme 9

1656

IV Pd-CATALYZED REACTIONS INVOLVING CARBOPALLADATION

Various domino cyclizations using substrates like 1 113 have been used successfully (Scheme 10).[4],[11]

The intramolecular addition to unsaturated esters was also possible. Best results are obtained with a t-amyl ester, which leads to a product that is less prone to undergo Claisen condensation. The same reaction is observed with the corresponding acetylenic ester (Scheme 11).[4]

I

1. Et2Zn

 

CO2Et

PdCl2(dppf ) cat.

 

25 °C, 2 h

 

2. CuCN 2 LiCl

 

COOEt

90% endo/exo 80:20

Br

 

 

1. Et2Zn

 

PdCl2(dppf ) cat.

I

 

25 °C, 2 h

 

2. CuCN 2 LiCl

11

 

 

 

CO2Et

 

 

 

 

 

 

 

 

 

 

 

 

 

n

1. Et2Zn (2 equiv)

 

Ni(acac)2 (2.5 mol %)

 

 

0 °C, 3h

I

2. CuCN 2 LiCl

 

 

 

 

CO2Et

 

 

 

 

12n = 1

13n = 2

CO2R

I

Br

Scheme 10

Et2Zn, THF PdCl2(MeCN)2 (1.5 mol %)

78 °C to 25 °C, 4 h

CO2Et

70% endo/exo 80:20

EtO2C

n = 1: 85 % endo/exo 1:2 n = 2: 63 % endo/exo 1:2

CH2 CO2R

R = Et

R = Et 57%

 

R = t-Am

R = t-Am 74%

 

 

 

 

CO2Me

Et2Zn ( 2 equiv), THF

 

CO2Me

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

PdCl2(MeCN)2 ( 1.5 mol % )

 

 

 

 

 

25 °C, 4 h

 

 

 

 

 

73%

 

 

 

 

 

 

Scheme 11

 

IV.11 PALLADIUM-CATALYZED CARBOZINCATION

1657

The reactivity observed with acetylenic ketones is more complex and the two iodoalkynyl ketones 14 and 15 behave in a different way (Scheme 12). Thus, the phenyl ketone 14 undergoes carbopalladation of the triple bond followed by a reductive elimination, furnishing the exo-alkylidenecyclopentane derivative 16. On the other hand, the methyl ketone 15 undergoes, after carbopalladation, a subsequent Michael addition, leading to the ketone 17 in 52% yield.

 

 

 

 

 

 

COPh

Et2Zn, THF

 

 

COPh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

PdCl2(MeCN)2 (1.5 mol %)

 

 

Et

 

 

 

 

 

 

 

25 °C, 4 h

 

 

 

 

 

 

 

 

 

 

 

 

14

 

 

 

 

 

16

60%

 

 

 

 

 

COMe

Et2Zn, THF

 

 

COMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

PdCl2(MeCN)2 (1.5 mol %)

 

Et

 

 

 

 

 

 

 

25 °C, 4 h

 

15

 

 

 

 

 

 

17 52%

Scheme 12

The scope of the reaction can be extended to unsaturated alkyl bromides as substrates by using Ni(acac)2 as a catalyst[12],[13] instead of Pd(II) complexes. The use of Ni(acac)2 as a catalyst even with several polyfunctional alkyl iodides gives better results. Thus, in the key step for the synthesis of methyl epijasmonate 18, the alkyl iodide 19 undergoes a smooth cyclization using Ni(acac)2 and Et2Zn (Scheme 13).[12]

OBn

1. Et2Zn, Ni(acac)2 cat

OBn

 

 

 

THF, 25 °C

 

CO2Me

2. CuCN 2 LiCl

Et

3. Br

 

 

 

 

Et

 

 

 

 

 

 

 

 

CO2Me

 

 

I

55 °C, 48 h

 

19

 

 

 

 

 

 

86%

 

 

 

 

 

 

95:5

 

 

 

 

 

 

 

O

Et

CO2Me

18 epijasmonate

Scheme 13

Polyfunctional alkyl bromides have been cyclized with Ni(acac)2/Et2Zn for the construction of various heterocycles[13] as well as for the antitumor antibiotic ( )-methylenolactocin 20. In this case, the alkyl bromide 21 is cyclized and selectively oxidized to the aldehyde 22, which is converted in a standard way to the natural product

20 (Scheme 14).

1658

IV Pd-CATALYZED REACTIONS INVOLVING CARBOPALLADATION

 

 

Me3Si

 

Br

 

1. Et2Zn, LiI

 

 

 

 

ZnX

 

 

 

 

 

 

 

 

 

OHC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ni(acac)2

 

 

O

 

SiMe3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THF, 40 °C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pent

O

OBu

 

2. O2, TMSCl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pent

O

OBu

 

THF, 5 °C

 

 

 

 

 

 

 

 

 

OBu

 

 

 

 

 

 

 

21

 

 

 

 

 

 

Pent

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

55%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO2C

 

 

 

 

 

 

 

 

 

 

 

HO2C

 

 

 

 

 

Jones reagent

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

acetone,

Pent

 

O

O

 

 

 

 

 

 

 

 

Pent

O

O

 

 

 

 

0 °C, 15 min

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90 %

 

 

 

 

 

 

20: ()-methylenolactocin

 

 

 

 

 

 

 

 

Scheme 14

 

 

 

 

 

 

 

 

 

 

 

 

D.SUMMARY

1.The treatment of an alkyl iodide with Et2Zn in the presence of catalytic amounts of palladium(II) salts leads to the corresponding organozinc iodide.

2.The reaction proceeds via a radical intermediate and can be used to perform radical cyclizations affording five-membered rings. However, the products of these reactions are organozinc reagents, which can be reacted with a wide range of electrophiles.

3.The cyclizations are stereoselective following the Beckwith rules and allow the elaboration of highly substituted cyclopentane derivatives.

4.Domino cyclizations can be performed.

5.Unsaturated alkyl bromides can be used as substrates if the Pd(II) catalyst is replaced by Ni(acac)2.

REFERENCES

[1]M. J. Rozema, S. AchyuthaRao, and P. Knochel, J. Org. Chem., 1992, 57, 1956.

[2]M. J. Rozema, C. Eisenberg, H. Lütjens, R. Ostwald, K. Belyk, and P. Knochel, Tetrahedron Lett., 1993, 34, 3115.

[3]H. Stadtmüller, R. Lentz, W. Dörner, T. Stüdemann, C. E. Tucker, and P. Knochel, J. Am. Chem. Soc., 1993, 115, 7027.

[4]H. Stadtmüller, A. Vaupel, C. E. Tucker, T. Stüdemann, and P. Knochel, Chem. Eur. J., 1996, 2, 1204.

[5]A. V. Kramer, J. A. Labinger, J. S. Bradley, and J. A. Osborn, J. Am. Chem. Soc., 1974, 96, 7145.

[6]A. V. Kramer and J. A. Osborn, J. Am. Chem. Soc., 1974, 96, 7832.

[7]C. Amatore, E. Carré, A. Jutand, H. Tanaka, Q. Ren, and S. Torii, Chem. Eur. J., 1996, 2, 957.

[8]M. Chanon, Bull. Soc. Chim. Fr., 1982, 2, 197.

[9]D. P. Curran, in Comprehensive Organic Chemistry, Vol. 4, B. M. Trost and I. Fleming, Eds., Pergamon Press, New York, 1991, 779.

IV.11 PALLADIUM-CATALYZED CARBOZINCATION

1659

[10]A. L. J. Beckwith, T. Lawrence, and A. K. Serehis, J. Chem. Soc. Chem. Commun., 1980, 484.

[11] H. Stadtmüller, C. E. Tucker, A. Vaupel, and P. Knochel, Tetrahedron Lett., 1993, 34, 7911.

[12]H. Stadtmüller and P. Knochel, Synlett, 1995, 463.

[13]A. Vaupel and P. Knochel, J. Org. Chem., 1996, 61, 5743.

Соседние файлы в папке Negishi E. 2002 Handbook of organopalladium chemistry for organic synthesis