Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

S.Warren. Designing organic syntheses

..pdf
Скачиваний:
614
Добавлен:
15.08.2013
Размер:
3.11 Mб
Скачать

38

O O O

1,5 - di CO

-

+

O O O O O (best anion)

This sequence can be carried out in one or two steps and makes an important molecule for steroid syntheses. Further details are given in Fleming pages 59, 75 and 171 if you are interested.

_______________________________________

119. If we want to make a simple 1,5-diketone we may have to use an activating group like CO2Et to control the reaction. How would you make TM 119?

OMe

O O

TM 119

_______________________________________

120. Analysis:

 

OMe

 

OMe

 

 

 

O

O

O

O

+

symmetrical

OMe

O

+

CHO

Synthesis: To ensure good yields, the reaction is best done on an activated compound, so the synthesis becomes:

 

 

 

 

 

 

O

OMe

 

 

O

 

 

CO2Et

O

 

O

 

O

 

 

 

 

CO 2Et

 

H+

 

 

 

 

 

 

TM 119

 

base no

MeO

 

base

MeO

H2O

CHO

ambiguity

 

 

 

 

 

 

 

 

 

 

 

Now what about TM 120?

O

TM 120

39

_______________________________________

121. Analysis:

 

O

 

O

O

O

 

 

 

 

 

 

CO2Et

 

a

a

 

O

+ CO2Et

-

 

O

 

 

 

+ i-PrI

 

b

add

 

 

 

control

 

 

 

 

 

 

Choosing the Michael disconnection at a rather than b since we can then use the CO2Et control group both for the alkylation and for the Michael reaction.

Synthesis:

 

 

O

 

 

O

O

EtO-

EtO-

 

1. base

 

 

CO2Et

 

 

 

O

TM 120

i-PrI

 

O

CO2Et 2. hydrolyse

CO2Et

 

 

 

 

 

and

 

 

 

 

 

decarboxylate

The final condensation could have gone the other way too, but it doesn't, presumably because attack on, the other carbonyl group is hindered. TM 120 is in fact piperitone, one of the flavouring principles of mint, and has been synthesised essentially by this route (J.C.S.,. 1935, 1583; Rec. Trav. Chim., 1964, 83, 464; Zhur. Obshchei Khim., 1964, 34, 3092, Chem. Abs., 1964, 61, 16098).

_______________________________________

(a)USE OF THE MANNICH REACTION

122. There is one special case worth discussing in some detail. When vinyl ketones (e.g. TM 122) are needed for Michael reactions they may obviously be made by the usual disconnection;

O O

+ CH2O

Which gives formaldehyde as one of the starting materials. Base-catalysed reactions with this very reactive aldehyde often give poor yields because of polymerisation and other side reactions. The Mannich reaction is used instead:

O

 

 

 

+

O

+

CH2O +

R2

' NH

H

 

R

NR2'

R

 

 

 

Write a mechanism for this reaction.

_______________________________________

123.

 

..

 

 

+

..

R2' NH CH2 O H+

R2' N CH2 OH

H

R2' N CH2 OH2+

 

 

..

 

O

 

 

+

OH

 

 

 

 

 

 

 

R2

' N CH2

R

R2' N

R

A

 

 

 

 

 

 

 

40

Alkylation of the product (a 'Mannich Base' A) gives a compound (B) which gives the required vinyl ketone on elimination in base. This last step is usually carried out in the basic medium of tile Michael reaction itself so that the reactive vinyl ketone (TM 122) need never be isolated.

 

O

MeI

O

+

 

base

O

 

 

 

 

 

 

TM 122

 

 

 

 

'

during Michael reacton

R

NR2'

 

R

NR2

R

 

A

 

B

Me

 

 

 

 

 

 

 

 

 

So how would you make TM 123?

O

Ph

_______________________________________

124. Analysis:

O

 

 

O

 

 

 

 

 

 

 

 

O

 

 

 

Ph

O

 

Ph

α,β -

 

 

 

O

 

O

 

 

 

+ CH2O

 

unsaturated

1,5 - di CO

+

 

 

 

 

carbonyl

 

 

Ph

 

 

 

 

 

 

 

 

 

control needed

 

 

 

 

 

 

 

 

 

 

 

(CO2Et)

 

Synthesis: J. Amer.Chem. Soc., 1954, 76, 4127.

 

 

 

 

 

O

 

 

 

 

O

base

 

CO2Et

O

Ph

 

CO2Et

 

 

 

 

PhCH2Br

 

 

 

CO2Et

H+ , H2O

 

 

Ph

 

 

 

 

base

 

 

 

 

 

 

TM 123

O

 

 

O

 

 

 

1. CH2O , Me2NH , H+

 

+NMe3

 

 

 

 

2. MeI

 

 

 

 

 

 

 

 

 

 

_______________________________________

3.REVIEW PROBLEMS

125. Review Problem 9 – Suggest a synthesis of TM 125, a commonly used synthetic intermediate called Hagemann’s ester.

41

CO2Et

TM 125

O

_______________________________________

126. Analysis:

CO2Et

CO2Et

 

 

CO2Et

α,β -

1,5 - di CO

unsaturated

+

carbonyl

O

O

O

O

O

 

Synthesis: Though we could follow the stepwise pattern of the disconnections, it is easier to add an activating group to the acetone molecule so that our starting materials are two molecules of acetoacetate and formaldehyde. It turns out that Hagemann's ester can be made in two steps without having to alkylate the Mannich base:

 

 

 

CO2Et

 

O

+

 

+

 

 

CH2O , R2NH , H

 

 

1. H / H2O

TM 125

 

CO2Et

 

 

 

 

EtO2C

 

2. EtOH / H+

 

 

 

 

 

 

 

 

 

O

_______________________________________

127. Review Problem 10 – Suggest a synthesis for

EtO2C

TM 127

O

 

_______________________________________

128. Analysls: Disregarding the remote and unhelpful double bond, we can disconnect as a 1,3-dioxygenated compound (frames 94-107).

EtO2C

1,3 - di O

EtO2C

EtO2C

O

Now note symmetry. Doubly allylic disconnection keeps symmetry, requires activation (frames 57-8 and 101-2).

 

FGI

EtO2C

 

EtO2C

Br

 

+ O

 

 

 

 

 

 

 

 

Br

 

CO2Et

CO2Et

 

 

 

 

 

 

 

Synthesis: actually done like this (Chem. Comm., 1967, 753; 1969, 26):

42

 

 

+

-

EtO2C

1. LiAlH4

Br

O + CH2(CO2Et)2

NH4

AcO

 

 

 

 

 

CO2Et

2. PBr3

 

 

 

 

 

 

 

1. NaH , CH2(CO2Et)2

EtO2C

 

 

NaH

 

TM 127

 

 

 

 

 

 

 

 

 

2. H+ , H2O , heat

EtO2C

 

 

 

 

 

 

 

 

 

3. H+ / EtOH

_______________________________________

129. Review Problem 11 - suggest a synthesis for TM 129

TM 129

O

_______________________________________

130. Analysis: Treat first as an α,β-unsaturated ketone:

 

 

 

 

1,5 - di CO

 

O

O

O

add

 

 

 

control

α,β -

 

 

α,β -

 

unsat

+

CH2O

unsat

 

CO

CO

 

O

 

O

 

 

 

CO2Et

+

O

symmetrical

1,5 - di CO

O

Br

O

A

control

CO2Et

+

O O

Synthesis: All by standard steps. Though the Michael addition on A could in the cry occur at either double bond, the unsubstituted position out of the ring is much more reactive than the disubstituted position in the ring and only the wanted reaction occurs. Bull. Soc. Chim. France, 1955, 8.

_______________________________________

D.ILLOGICAL TWO-GROUP DISCONNECTIONS

1. THE 1,2-DIOXYGENATION PATTERN

(a) α-HYDROXY-CARBONYL COMPOUNDS

131. So far all our two group disconnections have sensible synthons with anions or cations all stabilised by functional groups in the right positions. This won't always be the case. Supposing we wanted to make the hydroxy-acid TM 131; we could treat it as an alcohol:

 

 

 

H

 

 

 

 

 

O

 

 

O

-CO2H

 

 

 

 

+

TM 131

Ph

 

CO2H

Ph

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

43

but we get the apparently absurd synthon CO2H. In fact there is a common reagent for this synthon - a simple one-carbon anion which adds to ketones and whose adduct with A could easily be converted into TM 131. What is it?

_______________________________________

132. Cyanide ion! So the synthesis becomes:

O

CN-

 

OH

NaOH

 

+

Ph

 

 

TM 131

 

 

 

Ph

CN

H2O

 

H

 

 

 

 

_______________________________________

133. The aldehyde or ketone needed for this reaction is not always readily available. TM 133, labelled with radioactive 14C in one carboxyl group, was needed for a biochemical labelling experiment. How would you make it?

 

OH

 

TM 133

CO2H

= 14C

 

CO2H

_______________________________________

134. Analysis: The α-hydroxy acid can best be made from an aldehyde and 14CN-, then we can carry on as usual with a 1,3-dicarbonyl disconnection:

OH

 

CHO

 

 

 

 

CN- +

1,3-di CO

 

 

CO2H

 

+

 

CO2H

HCO2Et

CO2H

CO2H

 

 

 

 

 

 

 

Br

+-CH2CO2H

Svnthesis: (J. Amer. Chem. Soc., 1976, 98 , 6380; Tetrahedron, 1972, 28, 1995).

-

 

-

CHO

-

 

CH2(CO2Et)2

1. EtO

 

EtO

 

1. CN

 

CO2Et

 

CO2Et

 

TM 133

 

 

 

2.

HCO2Et

2. hydrolysis

 

Br

 

 

 

 

 

3. etc.

_______________________________________

135. Here is a more difficult example based also on α-hydroxy acids. Use the two phenyl groups as a clue for your first disconnetion in designing a synthesis for TM 135:

 

Ph

OH

 

OH

 

Ph

TM 135

 

 

OH

 

 

_______________________________________

136. Analysis: Using the clue, we remove both phenyl groups to give an ester:

44

Ph

OH

 

 

-

 

used in frame 109

 

 

 

 

 

OH

EtO2C

OH

CN +

OH

 

 

Ph

 

 

 

 

OHC

 

 

OH

 

OH

 

 

 

Synthesis:

 

CH2O

 

1. CN-

 

 

1. EtOH / H+

 

 

OH

HO2C

 

OH

 

TM 135

CHO

K2CO3

OHC

2. HO-/ H2O

OH

 

2. PhMgBr

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can either protect the two hydroxyl groups in A as a cyclic acetal or use four mols of PhMgBr and waste two of them.

_______________________________________

137. A more elaborate variation gives a generell amino acid synthesis. If the reaction between an aldehyde and cyanide is done in the presence of ammonia, the product is an α-amino-nitrile:

NH3 , CN- NH2

RCHO

RCH CN

Can you see what intermediate is being trapped by the cyanide ion?

_______________________________________

138. It must be the imine:

 

NH3

NH2

RCHO

RCH NH

RCH CN

 

-CN

A

 

 

NH2

RCH CO2H

B

Under the right conditions, hydrolysis of the cyanide A occurs during the reaction to give the amino acid B. How could you make the amino acid Valine (TM 138)?

 

TM 138

HO2C

NH2

_______________________________________

 

139. Analysis:

 

 

 

 

NC-

 

+ NH3

HO2C

NH2

NH

CHO

 

Synthesis:

 

NH3 , CN-

 

 

CHO

TM 138

 

 

This is the Strecker amino acid synthesis.

_______________________________________

45

140. Strangely enough, cyanide ion is also involved in one special reaction giving an α-hydroxy-ketone. Can you show how the adduct A of' benzaldehyde and cyanide ion can give a stable 'carbanion'?

 

 

 

 

Ph

Ph

 

 

 

 

 

 

 

A

O

OH

 

 

 

 

_______________________________________

 

 

 

 

141.

 

 

 

 

 

 

 

 

 

 

 

Ph

OH

 

 

Ph

OH

 

 

 

 

 

 

 

 

 

 

 

 

B : H

C

 

 

 

C

 

 

 

 

 

 

N

 

 

N -

 

 

This anion

now

reacts with another molecule of

benzaldehyde

to give

eventually the

α-hydroxy-ketone 141A. Draw mechanisms for these steps:

 

 

 

Ph

OH

 

 

 

 

 

Ph

Ph

CN-

 

 

 

 

 

 

 

 

C

+ PhCHO

 

 

 

 

O

+

 

N -

 

 

 

 

 

OH

 

 

 

 

 

 

 

141A

 

_______________________________________

 

 

 

 

 

 

142.

 

 

 

 

 

 

 

 

 

Ph

OH

Ph

 

 

Ph

Ph

 

 

 

 

C

C

 

 

 

OH

 

141A

 

 

 

H

O

 

 

 

- N

O

 

 

 

 

 

 

CN

 

 

 

 

 

 

 

 

 

The product is called benzoin and the reaction is known therefore as the benzoin condensation. No base is needed other than cyanide ion.

CN

-

Ph

Ph

 

 

 

 

PhCHO

 

 

benzoin

 

 

 

 

 

O

OH

_______________________________________

143. How could benzoin be elaborated into the more complex molecule TM 143?

 

Ph

 

Ph

 

O

TM 143

Ph

Ph

 

_______________________________________

144. Analysis: We can disconnect both the symmetrical α,β-unsaturated carbonyl linkages:

46

Ph

 

Ph

 

 

Ph

 

Ph

Ph

O

 

FGI

OH

HCO2Et + PhCH2MgBr

O

 

O

O

 

Ph

Ph

 

 

Ph

 

Ph

 

Ph

 

 

 

Synthesis:

 

 

 

 

 

 

CN-

Ph

Ph

CrO3

Ph

Ph

 

PhCHO

 

 

 

 

 

 

 

O

OH

 

O

O

 

 

 

 

 

 

 

base

 

 

Ph

 

 

Ph

TM 143

 

 

 

 

 

1. Mg , Et2O

 

CrO3

 

 

PhCH2Br

 

OH

 

 

O

 

2. HCO2Et

 

 

 

 

 

 

 

Ph

 

 

Ph

 

_______________________________________

145. The same problem of illogicality arises with other α-hydroxyketones:

H

O

-

O

+

 

O

O

A

Again we need a reagent for an acyl anion synthon (A). We find this in the acetylide ion since substituted acetylenes can be hydrated to ketones:

Hg2+ , H+ O

R H R

H2O

If you want to know more about this reaction, see Norman p.116 or Tedder, vol 1, p.108.

TM 145

How then could one make TM 145?

_______________________________________

146. Synthesis:

1. Na , lig NH3

H H

2. acetone

OH

O

OH Hg2+ , H+

TM 145

H2O

The reaction can be used for disubstituted acetylenes, but it is unambiguous only when they are symmetrical. Suggest a synthesis for TM 146.

O

TM 146

O

47

_______________________________________

147. Analysis: The

cyclic ether

is obviously

made from a diol, and

that gives us a

1,2-dioxygenated skeleton of the right kind:

 

 

O

O

 

 

 

 

 

 

 

FGI

 

FGI

O + H

H + O

 

OH HO

 

O

HO

OH

 

Synthesis: We need the symmetrical double adduct from acetone and acetylene.

 

 

 

 

1. base ,

O

H

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. base ,

O

Hg2+ , H+

TM 146

HO

OH

H2O

The ether forms spontaneously from the tertiary alcohols in acid.

_______________________________________

148. α-Hydroxy ketones take part in condensation reactions too. How would you make TM 148?

O

OH

TM 148

O

_______________________________________

149. Analysis: Start with the α,β-unsaturated relationship as the alternative (the 1,2-di O) is no good at the start. After the first disconnection we have a methyl ketone which can come from an acetylene:

 

 

CHO +

FGI

 

 

OH

O

OH

O

OH

 

O

 

O

 

 

 

H H +

O

Synthesis: (Ber. , 1922, 55, 2903 for the later stages).

1. Na , lig NH3

H H

2. acetone

OH

Hg2+ , H+

H2O

O OH

CHO

O

readily available furfural

TM 148

91%

Соседние файлы в предмете Химия