Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Sodium Channels and Neuronal Hyperexcitability

.pdf
Скачиваний:
10
Добавлен:
15.08.2013
Размер:
2.98 Mб
Скачать

Sodium Channels and Neuronal Hyperexcitability.

Novartis 241

Copyright & 2002 JohnWiley & Sons Ltd

Print ISBN 0-471-48530-6 Online ISBN 0-470-84668-2

SODIUM CHANNELS AND NEURONAL HYPEREXCITABILITY

Sodium Channels and Neuronal Hyperexcitability.

Novartis 241

Copyright & 2002 JohnWiley & Sons Ltd

Print ISBN 0-471-48530-6 Online ISBN 0-470-84668-2

The Novartis Foundation is an international scienti¢c and educational charity (UK Registered Charity No. 313574). Known until September 1997 as the Ciba Foundation, it was established in 1947 by the CIBA company of Basle, which merged with Sandoz in 1996, to form Novartis. The Foundation operates independently in London under English trust

law. It was formally opened on 22 June 1949.

The Foundation promotes the study and general knowledge of science and in particular encourages international co-operation in scienti¢c research. To this end, it organizes internationally acclaimed meetings (typically eight symposia and allied open meetings and 15^20 discussion meetings each year) and publishes eight books per year featuring the presented papers and discussions from the symposia. Although primarily an operational rather than a grant-making foundation, it awards bursaries to young scientists to attend the symposia and afterwards work with one of the other participants.

The Foundation’s headquarters at 41 Portland Place, London W1N 4BN, provide library facilities, open to graduates in science and allied disciplines. Media relations are fostered by regular press conferences and by articles prepared by the Foundation’s Science Writer in Residence. The Foundation o¡ers accommodation and meeting facilities to visiting scientists and their societies.

Information on all Foundation activities can be found at http://www.novartisfound.org.uk

Sodium Channels and Neuronal Hyperexcitability.

Novartis 241

Copyright & 2002 JohnWiley & Sons Ltd

Print ISBN 0-471-48530-6 Online ISBN 0-470-84668-2

Novartis Foundation Symposium 241

SODIUM CHANNELS AND NEURONAL HYPEREXCITABILITY

2002

JOHN WILEY & SONS, LTD

Sodium Channels and Neuronal Hyperexcitability.

Novartis 241

Copyright & 2002 JohnWiley & Sons Ltd

Print ISBN 0-471-48530-6 Online ISBN 0-470-84668-2

Copyright &Novartis Foundation 2002

Published in 2002 byJohnWiley & Sons Ltd,

Ba⁄ns Lane, Chichester,

West Sussex PO19 1UD, England

National

01243 779777

International (+44) 1243 779777

e-mail (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on http://www.wiley.co.uk

or http://www.wiley.com

All Rights Reserved. No part of this book may be reproduced, stored in a retrieval

system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency, 90 Tottenham Court Road, London,W1P 9HE, UK, without the permission in writing

of the publisher.

Other Wiley Editorial O⁄ces

JohnWiley & Sons, Inc., 605 Third Avenue,

NewYork, NY 10158-0012, USA

WILEY-VCH Verlag GmbH, Pappelallee 3,

D-69469 Weinheim, Germany

JacarandaWiley Ltd, 33 Park Road, Milton,

Queensland 4064, Australia

JohnWiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01,

Jin Xing Distripark, Singapore 129809

JohnWiley & Sons (Canada) Ltd, 22 Worcester Road,

Rexdale, Ontario M9W 1L1, Canada

Novartis Foundation Symposium 241 viii+244 pages, 42 ¢gures, 5 tables

Library of Congress Cataloging-in-Publication Data

Sodium channels and neuronal hyperexcitability / [editors], Gregory Bock, Jamie A. Goode. p. cm. ^ (Novartis Foundation symposium ; 241) (Ciba Foundation symposium)

Includes bibliographical references and index. ISBN 0-471-48530-6 (alk. paper)

1. Sodium channels ^Congresses. 2. Molecular neurobiology^Congresses. 3. Nervous

system^Diseases ^Molecular aspects ^Congresses. 4. Neurons ^Congresses.

I. Bock,

Gregory. II. Goode, Jamie. III. Series. IV. Series: Ciba Foundation symposium

QP356.2.S65 2001

 

612.8042^dc21

2001046625

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0 471 48530 6

Typeset in 1012 on 1212 pt Garamond by DobbieTypesetting Limited,Tavistock, Devon. Printed and bound in Great Britain by Biddles Ltd, Guildford and King’s Lynn.

This book is printed on acid-free paper responsibly manufactured from sustainable forestry, in which at least two trees are planted for each one used for paper production.

Sodium Channels and Neuronal Hyperexcitability.

Novartis 241

Copyright & 2002 JohnWiley & Sons Ltd

Print ISBN 0-471-48530-6 Online ISBN 0-470-84668-2

Contents

Symposium on Sodium channels and neuronal hyperexcitability, held atthe Novartis Foundation, London,14^16 November 2000

Editors: Gregory Bock (Organizer) and Jamie A. Goode

Thissymposiumisbased on aproposalmadeby JohnWood and StephenWaxman in conjunction with theYale^University College London Collaboration

Stephen G.Waxman Chair’s introduction: Sodium channels and neuronal

 

dysfunction . emerging concepts, converging themes

1

 

 

Richard D. Keynes Studies of multimodal gating of the sodium channel

5

Discussion

14

 

 

 

Richard Horn Molecular basis for function in sodium channels

21

 

Discussion

26

 

 

 

Stephen G.Waxman,Theodore R. Cummins, Joel A. Black and

 

 

Sulayman Dib-Hajj Diverse functions and dynamic expression of

 

neuronal sodium channels 34

 

 

 

Discussion

51

 

 

 

Wayne E. Crill, Peter C. Schwindt and John C. Oakley

Enhanced transmission

of glutamate current £owing from the dendrite to the soma in rat neocortical

layer 5 neurons 61

 

 

 

Discussion

68

 

 

 

Miriam H. Meisler, Jennifer A. Kearney, Leslie K. Sprunger,

 

 

BryanT. MacDonald, David A. Buchner and Andrew Escayg

Mutations of

voltage-gated sodium channels in movement disorders and epilepsy 72

 

Discussion

82

 

 

 

Louis Ptacek Channelopathies: episodic disorders of the nervous system

87

Discussion

104

 

 

 

Je¡rey L. Noebels Sodium channel gene expression and epilepsy

109

 

Discussion

120

 

 

 

v

vi

CONTENTS

Lori L. Isom b subunits: players in neuronal hyperexcitability? 124

Discussion 138

Stuart Bevan and Nina Storey Modulation of sodium channels in primary a¡erent neurons 144

Discussion 153

John N.Wood, Armen N. Akopian, Mark Baker,Yanning Ding,

Fleur Geoghegan, Mohammed Nassar, Misbah Malik-Hall, Kenji Okuse, Louisa Poon, Samantha Ravenall, Madhu Sukumaran and

Veronika Souslova Sodium channels in primary sensory neurons: relationship to pain states 159

Discussion 168

Michael M. Segal Sodium channels and epilepsy electrophysiology 173

Discussion 180

Gary R. Strichartz, Zhongren Zhou, Catherine Sinnott and Alla Khodorova Therapeutic concentrations of local anaesthetics unveil the potential role of sodium channels in neuropathic pain 189

Discussion 202

William A. Catterall Molecular mechanisms of gating and drug block of sodium channels 206

Discussion 218

Final general discussion 226

Index of contributors 233

Subject index 235

Sodium Channels and Neuronal Hyperexcitability.

Novartis 241

Copyright & 2002 JohnWiley & Sons Ltd

Print ISBN 0-471-48530-6 Online ISBN 0-470-84668-2

Participants

Mark D. Baker Department of Biology, University College London, Medawar Building, Gower Street, LondonWC1E 6BT, UK

Bruce Bean Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA

Stuart Bevan Novartis Institute for Medical Science, University College London, Gower Street, LondonWC1E 6BT, UK

Hugh Bostock Sobell Department of Neurophysiology, Institute of Neurology, Queen Square, LondonWC1N 3BG, UK

William A. Catterall Department of Pharmacology, F-427 Health Sciences Center, University of Washington, Seattle,WA 98195-7280, USA

Wayne Crill Department of Physiology and Biophysics, University of Washington, 1959 NE Paci¢c Street, HSB Room G424, Box 357290, Seattle, WA 98195-7290, USA

Ted R. Cummins Department of Neurology,Yale University, New Haven, CT 06520, USA

Michael S. Gold Oral and Craniofacial Biological Sciences, University of Maryland Dental School, 666 W. Baltimore Street, Baltimore, MD 21201, USA

Alan L. Goldin Department of Microbiology & Molecular Genetics, University of California at Irvine, Irvine, CA 92697-4025, USA

Richard Horn Department of Physiology, Institute of Hyperexcitability, Je¡erson Medical College, 1020 Locust Street, Philadelphia, PA 19107, USA

vii

viii

PARTICIPANTS

Lori L. Isom Department of Pharmacology,The University of Michigan Medical School, 1301MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0632, USA

Richard Keynes Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK

Miriam Meisler Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-0618, USA

Je¡rey L. Noebels Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston,TX 77030, USA

Louis Ptacek Howard Hughes Medical Institute, University of Utah School of Medicine, Room 4425, Salt Lake City, UT 84112-5331, USA

Indira M. Raman Department of Neurobiology and Physiology, Northwestern University, 2153 North Campus Drive, Evanston, Illinois 60208-3520, USA

Michael Segal Harvard Medical School and Brigham & Women’s Hospital, Longwood Medical Research Center, 221 Longwood Ave, Boston MA 02115, USA

Nelson Spruston Department of Neurobiology and Physiology, Northwestern University, 2153 N. Campus Drive, Evanston, IL 60208-3520, USA

Gary R. Strichartz Pain Research Center, Harvard Medical School, Anaesthesia Research Laboratories, Medical Research Building 611, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA

StephenWaxman (Chair) Department of Neurology,Yale Medical School, 333 Cedar Street, LCI-707, New Haven, CT 06510, USA

JohnWood Department of Biology, University College London, Medawar Building, Gower Street, LondonWC1E 6BT, UK

Sodium Channels and Neuronal Hyperexcitability.

Novartis 241

Copyright & 2002 JohnWiley & Sons Ltd

Print ISBN 0-471-48530-6 Online ISBN 0-470-84668-2

Subject index

A

 

 

 

 

 

 

 

accessory subunits

161^162

 

see also b subunits

 

 

 

 

 

acetazolamide (Diamox)

91, 93, 231

acetylcholine (ACh)

 

95, 96

 

 

see also nicotinic acetylcholine receptor

activation

22

 

 

 

 

 

 

b scorpion toxin action 209, 210

coupling to inactivation

211^213

gate immobilization

24^25, 27

hyperpolarized dependence

38

molecular basis

31, 208^209, 210

Ad ¢bres

161

 

 

 

 

 

 

adenosine

149, 178

 

 

 

 

 

adenovirus vectors

165

 

 

 

allodynia, mechanical

191, 192, 204

a scorpion toxins

 

 

 

 

 

 

binding sites 207

 

 

 

 

local anaesthetic actions and

192^194, 204

mechanism of action

213, 214, 222^224

a subunits

2, 89, 206^207

 

 

interaction site with b subunits 31^32,

126^128

 

 

 

 

 

 

modulation by b subunits

124^125

nomenclature

3

 

 

 

 

 

phosphorylation

145

 

 

in sensory neurons

160

 

 

D-2-amino-5-phosphonopentoic acid see APV amygdala

in epileptogenesis 114 SCN5A localization 112, 113

analgesics, future prospects 161^162 Andersen’s syndrome 107

ankyrin 129^130, 134, 142 ankyrinG 133, 135 antagonists, Na+ channel

anticonvulsant activity 176^177 molecular mechanisms 213^216, 218^222 in neuropathic pain 189^205

novel 216, 219

anti-arrhythmic drugs 186, 215, 223

anticonvulsants

binding site 183^184, 215

mechanisms of action 176^178, 184^185, 186, 223

antisense Nav1.8 (SNS, PN3) 170^171, 190

APV 62, 63, 64, 175, 185^186 astrocytes 52, 123, 134, 135, 142 ataxia

episodic see episodic ataxia

mutant mouse models 45^48, 76^78, 94^95

progressive cerebellar (SCA6) 94, 99 axotomized neurons 42^45, 46, 51^52, 53,

55^59

B

BIII 890 CL (novel Na+ channel blocker)

216, 219

 

 

 

 

 

BAC clones

86

 

 

 

 

ba¢lomycin A

152

 

 

 

 

bed nucleus of stria terminalis 112

 

benzophenone-4-carboxamidocysteine

 

methanethiosulfonate (BPMTS)

23, 24,

26^27, 28, 29, 30^31

 

 

 

b scorpion toxins 207, 208^209, 210, 213,

222^224

 

 

 

 

 

b subunits

2, 89, 124^143, 161, 206

 

a subunit interaction site

31^32, 126^128

in cardiac myocytes 130^131

 

 

evolution

229

 

 

 

 

function as CAMs

128^130, 208

 

in heterologous expression systems

125

homophilic interactions

129^130

 

in human disease

131^133

 

 

modulation of channel gating

124^125

mutations

107

 

 

 

 

phosphorylation

139^140, 141^142

structural homology to CAMs

126

 

structure

207^208

 

 

 

see also speci¢c subtypes

 

 

 

235

236

b1 subunits 124^125, 126, 161 a scorpion toxin and 222^223 in cardiac physiology 131 function as CAMs 129^130

in heterologous expression systems 125 Ig loop region in a subunit interactions

126^128

 

 

 

mutations

110^111

 

in neuropathic pain

133

NGF e¡ects

162

 

 

structure

207^208

 

b1A subunits

125, 126, 161

b2 subunits

124^125, 126, 161

in cardiac physiology

131

function as CAMs

128, 129^130

knockout mice

142

 

in neuropathic pain

133

structure

207^208

 

b3 subunit 125, 126, 161

Bezanilla’s crevices

9^11, 23, 32^33

bicarbonate ions

231

 

biolistic gene gun

164

 

blockers, Na+ channel see antagonists, Na+ channel

brefeldin 157 8-bromo-cAMP 146^147, 149

Brugada syndrome 123, 132^133 a-bungarotoxin 96

bursting

frog skeletal muscle channels 11, 13, 16^17

neuronal 17, 178, 204

C

C-¢bres 53, 59, 161 CA1 neurons 71, 73^74 Ca2+

intracellular, DRG neurons 156, 157 spikes 69, 70^71, 88

zero 185^186

Ca2+ channel blockers 69 Ca2+ channels 229

b subunits 125 L-type 88, 213

mutations 92, 94^95, 99 neocortical layer 5 neurons 68^69 structure 22, 88^89

CACNA1A mutations 94, 100^101 cadmium (Cd2+) 36, 37, 38, 71

SUBJECT INDEX

Caenorhabditis elegans 229 CAG repeat expansions 94 calcineurin 145

calcium see Ca2+

CAMs see cell adhesion molecules carbamazepine 186

carbonic anhydrase inhibitors 91, 93, 230, 231

cardiac glycosides 122 cardiac myocytes

b subunits 130^131

Na+ channel targeting and clustering 135

cartwheel cells, dorsal cochlear nucleus 76

cell adhesion molecules (CAMs)

 

b subunit function

128^130, 208

 

L1 family

129, 130, 142

 

 

 

nodes of Ranvier

133^135, 138

 

structural homology of b subunits

126

cell migration, b subunits and

128^129

cellular aggregation, b subunits and

 

129^130

 

 

 

 

 

 

channelopathies

 

 

 

 

 

acquired

2

 

 

 

 

 

 

inherited see inherited channelopathies

chloroquine

152

 

 

 

 

 

choreoathetosis, paroxysmal dystonic

101

 

 

 

 

 

 

 

 

chronic constriction injury

133, 163

 

Cl7 channels

87^88

 

 

 

 

mutations

92^93, 99

 

 

 

structure

89

 

 

 

 

 

CLCN1 mutations

92^93

 

 

 

CNQX

175, 185^186

 

 

 

Cole^Moore e¡ect

32

 

 

 

m conotoxin

223

 

 

 

 

contactin

126, 134, 135, 138

 

 

convulsions see seizures

 

 

 

cooperativity, S4 segment domains

15^16,

29

 

 

 

 

 

 

 

 

cornea 160^161

 

 

 

 

 

Cre/lox-P system

164^165

 

 

 

crevices, Bezanilla’s

9^11, 23, 32^33

cultures, microisland

174^178

 

 

cyclic AMP (cAMP)

145^147, 149, 162

cycloheximide

158

 

 

 

 

cysteine accessibility scanning

8^9, 22^23,

31^32, 209, 211

 

 

 

 

cytoplasmic loop domains

229

 

 

cytoskeletal interactions 130, 133^135, 139, 228