Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

The Nitro Group in Organic Synthesis

.pdf
Скачиваний:
170
Добавлен:
15.08.2013
Размер:
4.69 Mб
Скачать

4.3 MICHAEL ADDITION OF NITROALKANES

111

The sequence of the Michael addition of nitroalkanes and denitration provides a general method for conjugate addition of primary and secondary alkyl groups to electron deficient alkenes (Eq. 4.122).168

 

 

O

O2N

Me

CO2Me

 

CO2Me

MeNO2

 

 

Me

 

 

 

 

 

 

O2N

 

 

 

O

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

PhO2S

CO2Me

 

 

Bu3SnH

PhO2S

CO2Me

SO2Ph

 

 

 

 

 

 

 

Me

 

 

AIBN

 

 

Me

DBU

 

 

 

benzene

 

O2N

 

 

 

H

 

 

 

 

80 ºC

 

 

 

 

O

 

 

 

O

 

 

 

 

 

 

 

 

(4.122)

 

 

 

 

 

NO2

 

TBDMSO

CHO

1) MeONa, MeNO2,

 

TBDMSO

 

 

 

 

 

 

 

 

Me

MeOH, RT, 2 h

 

 

Me

 

 

 

2) MsCl, Et3N, CH2Cl2

 

 

 

 

 

 

 

Me

 

0 ºC, 1 h

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

62%

 

 

 

NO2

 

 

 

1) NaBH4, CHCl3/i-PrOH,

 

amberlyst A-21, Et2O,

RT, 40 min

RO

 

2) CH3CN/H2O, HF,

 

Me

RT, 2 h

 

 

 

 

 

 

RT, 24 h

 

 

 

O

OTBDMS

 

3) (S)-2-methylbutyric

Me

 

 

anhydride, DMAP,

 

 

 

 

59%

 

 

 

 

40 ºC, 20 min

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

O

OTBDMS

 

 

 

 

 

 

 

 

 

 

 

 

n-Bu3SnH, AIBN

 

 

 

O

NO2

toluene

 

 

 

Me

Me

 

 

 

reflux, 30 min

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

70%

 

 

 

 

 

O

 

 

 

HO

O

O

OTBDMS

 

O

 

O

 

 

 

O

 

 

 

 

O

 

Me

Me

 

 

Me

 

Me

Me

 

 

 

Me

 

 

 

55%

 

 

(+)-dihydromevinolin

Scheme 4.25.

112 MICHAEL ADDITION

Hanessian and coworkers have used this strategy for a total synthesis of (+)-dihydromevi- nolin (Scheme 4.25).169

Ballini and coworkers have developed a new strategy for alkenylation of carbonyl compounds based on the Michael addition followed by elimination of HNO2 (see Section 7.3). A variety of 2-alkylidene 1,4-dioles have been conveniently prepared, in two steps, by the Michael addition of a nitroalkane to the appropriate enedione derivatives under basic conditions, followed by chemoselective reduction with LiAlH4 (Eq. 4.123).170

Me

NO2

CO2Me

 

Me

CO2Me

 

Me

OH

DBU

 

 

LiAlH4

 

OH

+

 

Me

H

MeCN Me

CO2Me

 

Me

 

CO2Me

 

82%

 

 

 

 

94%

 

 

(4.123)

The synthesis of 2,3,5-trialkylpyrroles can be easily achieved by conjugate addition of nitroalkanes to 2-alken-1,4-dione (prepared by oxidative cleavage of 2,5-dialkylfuran) with DBU in acetonitrile, followed by chemoselective hydrogenation (10% Pd/C as catalyst) of the C-C- double bond of the enones obtained by elimination of HNO2 from the Michael adduct. The Paal-Knorr reaction (Chapter 10) gives 2,3,5-trialkylpyrroles (Eq. 4.124).171

 

 

 

 

 

 

 

 

 

 

O

 

 

Me

 

Me

 

 

DBU

 

Me

Me

 

 

 

+

PhCH2CH2NO2

 

 

 

 

 

O

MeCN

 

O

 

 

 

O

 

 

 

CH2Ph

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

O

77%

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

Pd/C

 

Me

Me

PhCH2NH2 Me

 

Me

 

 

 

 

 

N

(4.124)

 

 

H2

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH2Ph

 

 

 

 

 

H CH2Ph

 

 

 

 

 

 

 

95%

 

 

 

 

 

92%

 

 

The Michael addition of cyclic α-nitro ketones to acrolein or methyl vinyl ketone followed by reduction of the carbonyl group and treatment with base results in the ring expansion (Eq. 4.125).172 Hesse and coworkers have used this strategy for the preparation of various macrolides.173 For example, Michael addition of 2-nitrocyclodecanone methyl vinyl ketone followed by reduction with (S)-alpine-hydride gives the nitrolactone in 72% yield. Radical

denitration of the nitrolactone with Bu3SnH gives (+)-(S)-tetradecan-13-olide in 44% yield (Eq. 4.126).173c

 

O

 

(H2C)n

O

 

 

C)

 

 

 

 

 

2 n

CHO

 

 

 

 

 

 

 

 

 

 

 

 

n NO2

 

 

 

 

CHO

 

PPh3

NO2

 

 

 

n = 0, 1, 2, 6

 

 

84–93%

 

 

 

 

 

 

O

 

O

 

 

 

 

 

 

 

 

 

 

(H2C)n

 

 

 

O

 

NaBH4

 

 

 

OH

 

 

(H2C)n

 

 

 

NaH

 

 

 

 

 

NO2

 

 

DME

 

 

 

 

90–95%

 

 

 

NO2

 

 

 

 

 

 

 

75–81% (4.125)

 

 

 

 

 

 

 

 

 

 

4.3 MICHAEL ADDITION OF NITROALKANES 113

O

O

O

O

 

 

 

 

NO2

 

 

 

 

PPh3

 

NO2

 

 

O

Me

O

Me

 

(S)-alpine

 

Bu3SnH

 

 

hydride

 

 

 

 

NO2

AIBN

 

 

 

 

 

(4.126)

 

 

72%

 

44%

The Michael addition of α-nitro ketones to α,β-unsaturated ketones followed by radical denitration provides a useful strategy for the preparation of 1,4-diketones.134b 1-Phenylheptane-

1,5-dione, isolated from the decayed heart wood of aspens, is prepared by this strategy (Eq. 4.127).174

 

 

 

 

 

 

 

O

O

 

O

 

+

 

PPh3

 

Ph

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

Ph

 

O

 

 

 

 

NO2

 

 

 

 

 

 

 

 

 

 

O

O

71%

 

 

 

 

 

 

 

 

Bu3SnH

Ph

 

 

(4.127)

 

 

 

AIBN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70%

 

 

 

The Michael addition of nitro compounds to α,β-unsaturated ketones or esters followed by reduction of the nitro to amino group is useful for the preparation of various heterocycles. This is presented in Chapter 10 (Synthesis of Heterocycles).

4.3.2 Intramolecular Addition

Intramolecular Michael addition of nitro compounds proceeds in a stereoselective way to give various types of cyclic nitro compounds with high stereoselectivity. The Michael addition of 1-acetylcyclohexene to nitrostyrene followed by treatment with MeONa in MeOH gives 4-nitro-3-phenyldecalone with high stereoselectivity (Eq. 4.128).175

O

 

 

O Ph

 

 

 

 

NO2

 

1) LDA

 

 

 

2) Ph

NO2

 

 

 

 

75%

 

 

 

 

 

 

 

 

O

O

 

 

 

H

H

 

MeONa-MeOH

+

(4.128)

 

 

 

 

RT

 

Ph

Ph

 

 

H

H

 

 

 

NO2

NO2

 

 

 

45% (7:93)

114 MICHAEL ADDITION

Double Michael additions of nitro compounds bearing tethered acidic carbons to 3-butyn- 2-one under NaH catalysis give nitrocyclohexanes with high stereoselectivity. The products are transformed into trans-fused bicyclic compounds via the Dickmann reaction on treatment with base. (Eq. 4.129).176

 

O

CN

 

 

Me

CNO

CN

Me

CO2Et

NaOEt

 

 

Me

 

 

 

 

CO2Et NaH, THF

 

Me

 

 

 

NO

O2N

 

O

N

 

Me

2

 

O

2

 

OEt

 

 

58%

 

 

 

80%

(4.129)

The intramolecular Michael addition is used as a key step for synthesis of epibatidine (Scheme 4.26).177 Epibatidine is an analgesic, operating by a nonopioid mechanism, it is several hundred times more potent than morphine.

 

 

 

 

 

 

 

 

 

O

 

O2N

 

 

 

 

 

 

 

1) NaBH4/EtOH

 

 

 

 

 

KF/Al2O3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

2) MeSO2Cl

 

 

 

THF, RT

 

 

 

 

 

 

 

 

 

 

 

 

CH2Cl2, py

Cl

N

 

 

 

 

Cl

NO2

 

 

 

 

N

 

 

 

 

 

 

 

 

 

59%

 

 

 

 

 

 

OR

 

 

 

 

 

OMs

 

 

 

 

 

SnCl2•2H2O

 

 

 

 

 

 

 

 

 

 

toluene

 

 

 

 

 

 

 

 

 

 

 

NO2

 

EtOH

 

NH2

Cl

 

 

 

 

 

N

 

 

 

 

Cl

R = H (67%)

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

R = Ms (91%)

 

 

 

 

 

80%

 

 

 

 

 

R = CO-menthyl

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t-BuOK

 

N

N

 

 

 

 

 

 

N

t-BuOH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

50%

 

 

 

 

 

 

 

60%

 

 

 

 

 

Scheme 4.26.

Barco and coworkers have reported a more elegant synthesis of the nitrocyclohexanone via the double Michael addition of nitromethane with enones. (Eq. 4.130).178

 

 

O

TolSO2

MeNO2

 

O

(4.130)

KF

 

 

 

Cl N

Cl

NO2

 

N

4.4 ASYMMETRIC MICHAEL ADDITION

115

The sequential process consisting of palladium-catalyzed alkylation and the intramolecular Michael addition of nitro compound provides a nitrocyclohaxane derivative, which is a good precursor for synthesis of Erythrina alkaloids (Eq. 4.131).179

O

O- Li+

AcO

Pd(PPh3)4, PPh3

 

 

N

 

+

THF

 

 

O

O-

 

 

 

 

MeO2C

 

 

 

 

 

 

 

 

 

O

 

 

 

O

 

 

 

NO2

 

 

 

O

 

D

C

 

 

 

CO2Me

O

N

(4.131)

 

1

H

B

 

 

 

 

A 6

 

 

H2C

 

 

3

 

 

 

 

MeO

 

 

 

57%

 

 

 

 

 

 

 

 

 

 

4.4 ASYMMETRIC MICHAEL ADDITION

4.4.1 Chiral Alkenes and Chiral Nitro Compounds

Diastereoselective conjugate addition of nucleophiles to enones, enals, and enoates occurs with high stereocontrol and constitutes a powerful method in stereoselective synthesis.185

The conjugate addition of nucleophiles to optically pure γ-oxygenated substrates is of special interest in the enantioselective synthesis of natural products. Highly syn-selectivity is observed in the conjugate addition of ammonia,186 alkoxides,187 and alkyllithium derivatives.188 High anti-selective addition is observed in the addition of metal enolates and cuprates.189 The Michael addition of nitromethane to enoates derived from glyceraldehyde acetonide leads to syn-adducts with high diastereoselectivity (de 76–90%) (Eq. 4.132).190 Primary and secondary nitroalkanes afford syn-adducts diastereoselectively in the Bu4NFor DBU-catalyzed Michael addition to the same enoates of Eq. 4.132.191

 

O

 

 

 

O

 

 

Bu4NF·3H2O

O

 

 

OEt

 

 

+ MeNO2

 

 

O

OEt

 

 

 

 

(4.132)

THF

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

O

 

 

 

O2N

70% (syn/anti = 95/5)

Syn-selectivity of the DBU-catalyzed Michael addition of nitromethane to chiral γ-oxygen- ated enones is quite general, as shown in Scheme 4.27.192

Feringa and coworkers have used the optical active furanone or pyranone as an acceptor for the diastereoselective Michael reactions (Eq. 4.133).193

 

 

 

 

 

 

 

 

O

 

 

O

O H

 

 

 

 

O

O H

 

O

 

Me

CHNO

2

 

 

(4.133)

 

 

 

2

 

 

O2N

 

 

O

 

 

 

N

 

O

O

 

O

N

N

 

Me

Me

 

 

 

 

76% (90% de)

 

 

 

 

 

 

H

 

 

116 MICHAEL ADDITION

 

 

 

 

 

 

 

 

 

 

 

O

N

 

 

 

 

O

N

 

MeNO2

O

 

S

 

 

O

S

 

DBU

 

O

 

 

 

 

 

 

O2N

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

92% (88% de)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

 

 

 

O

O

 

 

O

O

 

 

 

 

 

MeNO2

O

 

S

 

 

O

 

 

S

 

 

 

 

 

DBU

 

 

 

 

 

 

 

 

 

 

OBn

N

 

 

 

OBn

N

 

 

 

 

 

 

 

 

94% (83% de)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

O

NO2

 

O

O

 

O

 

 

O

 

 

MeNO2

ButMe2SiO

 

S

t

Me2SiO

 

 

S

 

Bu

 

 

DBU

 

 

 

 

 

 

 

 

 

 

O

O

N

 

 

O

O

N

 

 

 

 

 

 

 

 

 

92% (86% de)

Scheme 4.27.

Krief and coworkers have found that 2-lithio-2-sulfonylpropane and 2-lithio-2-nitropropane behave differently in the addition to dimethyl alkylidenemalonate. Thus, 2-lithio-2-sulfonyl- propane reacts with it almost exclusively on the (Si)-face and leads to the anti-adduct, whereas 2-lithio-2-nitropropane reacts under similar reaction conditions, exclusively on the (Re)-face, providing the syn-product (Eq. 4.134).194

 

 

Me SO2Ph

Me

SO2Ph

 

 

 

Me

CO2Me

 

 

 

Me

Li

O

 

 

 

 

 

 

CO2Me

 

 

CO2Me

THF

 

 

 

O

 

 

O

 

 

 

 

 

CO2Me

Me NO2

72% (92% de)

(4.134)

 

Me

NO2

 

O

 

 

 

Me

Li

 

 

Me

CO2Me

 

 

 

 

 

 

 

 

THF

O

CO2Me

 

 

 

 

 

 

 

O

71% (100% de)

The Michael addition of nitromethane to vinylogous esters of N-protected amino acids proceeds with good yields and with good diastereoselectivity (Eq. 4.135).195

 

 

 

 

NHBoc

NHBoc

MeNO2

EtO

 

Me

 

EtO

 

 

 

 

Me

 

O

(4.135)

DBU

 

 

O

 

O2N

 

 

 

95% (60% de)

Levoglucosenone, a cellulose-derived α,β-unsaturated ketone, is an interesting material because it is both chiral and contains an activated double bond. This compound has been used

4.4 ASYMMETRIC MICHAEL ADDITION

117

as a chiral starting material for synthesis of a variety of natural compounds such as alkaloids or antibiotics.196 The Michael addition of nitro compounds to levoglucosenone provides a useful tool for the synthesis of various chiral compounds. Nitromethane undergoes TMG-catalyzed addition to levoglucosenone, affording 2:1 and 1:2 adducts in high yield (95%); the products result from initial Michel addition exclusively at the exo-face of the alkene anti to the 1,6-anhydro bridge (Eq. 4.136).197 If nitromethane is used as a solvent, the 2:1 adduct is obtained. A reaction is carried out by stirring a mixture of nitromethane and levoglucosenone (2:1 ratio) in CH2Cl2 in the presence of catalytic amounts of TMG to give a 1:2 adduct.

 

 

 

O

O

O

MeNO2

O

MeNO2

O

O

TMG

 

TMG

NO2

 

O2N

O

OH

O

MeNO2

 

O2N

 

TMG

 

O

 

 

 

 

 

 

 

O

OH

(4.136)

 

 

 

 

 

 

 

O2N O

O O

A variety of important synthetic reactions can be promoted by electrogenerated bases (EGB). The Michael addition and alkylation of compounds with activated hydrogen atoms are two examples in which using EGB has been very successful. The electrochemical method is very successful for functionalization of levoglucosenone as shown in Scheme 4.28.198

 

O

 

 

O

 

 

 

O

 

 

O

 

 

 

 

O

 

O

 

 

EtO

 

OEt

Me

OEt

 

 

 

NO2

O

O2N

O

 

 

 

O

 

 

 

O

 

EtO2CCH(NO2)CH2CH2CO2Et

MeCH(NO2)CO2Et

 

 

O

 

 

 

 

 

 

 

 

 

 

O

O

 

 

 

 

 

 

 

 

 

 

O

O

O2NCH2CO2Et

 

 

O

 

 

 

 

 

 

 

 

OEt

 

 

Me2CHNO2

O2N

Me NO

O

 

 

Me

2

 

 

 

 

O

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cyclo-C5H9NO2

CH3NO2

 

 

 

 

O

 

 

 

 

O

 

 

 

 

 

 

 

O

O2NCH2CO2Et

CH2(NO2)2

 

O

OH

 

O

CH2=CHCH2Br

 

 

 

 

 

 

 

 

O2N

 

O

O

O2N

 

O

 

 

O

O

 

O

 

 

O

O

 

 

 

 

 

 

 

 

O

 

 

 

 

EtO

 

 

 

 

 

 

 

 

 

 

NO2

O2N NO2

 

 

 

 

 

O

 

 

 

Scheme 4.28.

118 MICHAEL ADDITION

4.4.2 Chiral Catalysts

Catalytic enantioselective nucleophilic addition of nitroalkanes to electron-deficient alkenes is a challenging area in organic synthesis. The use of cinchona alkaloids as chiral catalysts has been studied for many years. Asymmetric induction in the Michael addition of nitroalkanes to enones has been carried out with various chiral bases. Wynberg and coworkers have used various alkaloids and their derivatives, but the enantiomeric excess (ee) is generally low (up to 20%).199 The Michael addition of methyl vinyl ketone to

2-nitrocycloalkanes catalyzed by the cinchona alkaloid cinchonine affords adducts in high yields in up to 60% ee (Eq. 4.137).200

 

 

 

N

 

 

 

HO

 

 

 

H

H

O

O

 

 

O

 

O

 

 

 

NO2

N

 

 

+

(4.137)

 

 

NO2

 

 

CCl4, –20 ºC, 60 h

 

84% (54.6% ee)

Matsumoto and coworkers have introduced a new strategy for asymmetric induction under high pressure. The Michael addition of nitromethane to chalcone is performed at 10 kbar in the presence of a catalytic amount of chiral alkaloids. The extent of asymmetric induction reaches up to 50% ee with quinidine in toluene.201

Chiral monoaza-crown ethers containing glucose units have been applied as phase-transfer

catalysts in the Michael addition of 2-nitropropane to a chalcone to give the corresponding adduct in up to 90% ee. (Eq. 4.138).202

O

 

 

 

 

 

 

O

Me

Me

NaOtBu, toluene

 

+

 

*

NO2

 

 

 

 

 

H

MeO

H

 

O

 

 

 

 

 

O

O2N Me

 

 

O

 

 

 

 

 

 

 

 

N R

 

 

 

 

 

 

Me

 

 

 

 

H O

 

 

1

1

O

O

82% (90% ee)

 

R

O R

 

 

 

 

(4.138)

Yamaguchi and coworkers have found that proline rubidium salts catalyze the asymmetric Michael addition of nitroalkanes to prochiral acceptors. When (2S)-L-prolines are used, acyclic (E)-enones give (S)-adducts. Cyclic (Z)-enones give (R)-adducts predominantly (Eq. 4.139).203 Recently, Hanessian has reported that L-proline (3 ~ 7% mol equiv) and 2,5-dimethylpiperazine are more effective to induce catalytic asymmetric conjugate addition of nitroalkanes to cycloalkanones.204

O

NO2

N CO2Rb

O

 

H

 

 

+

(5–10 mol%)

(4.139)

 

20 h

 

 

O2N

 

 

 

 

 

 

84% (84% ee)

REFERENCES 119

Heterobimetallic asymmetric complexes contain both Bronsted basic and Lewis acidic functionalities. These complexes have been developed by Shibasaki and coworkers and have proved to be highly efficient catalysts for many types of asymmetric reactions, including catalytic asymmetric nitro-aldol reaction (see Section 3.3) and Michael reaction. They have reported that the multifunctional catalyst (R)-LPB [LaK3tris(R)-binaphthoxide] controls the Michael addition of nitromethane to chalcones with >95% ee (Eq. 4.140).205

O

 

(R)-LPB, tBuOH

O2N

O

 

 

 

 

 

 

 

 

 

 

 

Ph

CH3NO2 (1.2 equiv)

(S)

Ph

(4.140)

 

 

 

 

 

 

toluene

–20 ºC, 109 h

59% (97% ee)

The catalytic asymmetric nitro Mannich-type reaction using the complex Yb, K, and binaphthol gives the best result (see Eq. 4.141).206 The reaction conditions are important to get a good ee, where nitromethane is added very slowly over 27 h.

 

 

catalyst (20 mol%)

NO2

O

+ CH3NO2

(Yb/K/binaphthol = 1/1/3)

O

PPh2

 

Ph N PPh2 (4.141)

toluene/THF (7/1)

(5 equiv)

Ph N

–40 ºC

H

 

 

79% (91% ee)

 

 

 

REFERENCES

1a. Feringa, B. L., and J. F. G. A. Jansen. In Houben-Weyl Methoden der Organischen Chemie, 4th Ed Vol. E21, Chapter 1.5.2.4. Thieme, Stuttgart, 1995, p 2104.

1b. Perlmutter, P. In Conjugate Addition Reactions in Organic Synthesis, Tetrahedron Organic Chemistry Series, Vol 9, Pergamon Press, Oxford, 1992.

1c. Boyd, G. V. In The Chemistry of Amino, Niroso, Nitro and Related Groups,Part 1, ed. by S. Patai, John Wiley, New York, 1996, p. 533–626.

2a. Parham, W. E., and F. L. Lamp. J. Am. Chem. Soc., 73, 1293 (1951).

2b. Ono, N., T. Hashimoto, T. X. Jun, and A. Kaji. Tetrahedron Lett., 28, 2277 (1987).

3.Vasilevskis, J., J. A. Gualtieri, S. D. Hutchings, R. C. West, J. W. Scott, D. R. Parrish, F. Bi zzarro, T., and G. F. Field. J. Am. Chem. Soc., 100, 7423 (1978).

4.Ono, N., A. Kamimura, and A. Kaji. J. Org. Chem., 51, 2139 (1978).

5.Marx, M., F. Maeri, J. Reisdorf, R. Sandmeier, and S. Clark. J. Am. Chem. Soc., 99, 6754 (1977).

6.Confalone, P. N., G. Pizzolato, D. L. Lollar-Confalone, and M. R. Uskokvic. J. Am. Chem. Soc., 102, 1954 (1980).

7.Ahrach, M., R. Schneidert, P. Gerardin, and B. Loubinoux, Synth. Commun., 27, 1865 (1997).

8.Ono, N., A. Kamimura, and A. Kaji. Tetrahedron Lett., 25, 5319 (1984).

9.Nagao, Y., K. Kaneko, and E. Fujita. Tetrahedron Lett., 1215 (1976).

10.Kamimura, A., H. Sasatani, T. Hashimoto, and N. Ono. J. Org. Chem., 54, 4998 (1989).

11.Kamimura, A., H. Sasatani, T. Hashimoto, T. Kawai, K. Hori, and N. Ono. J. Org. Chem. 55, 2437 (1990).

12.Ono, N., A. Kamimuta, T. Kawai, and A. Kaji. J. Chem. Soc., Chem. Commun., 1550 (1987).

13.Kamimura, A., and N. Ono. Tetrahrdron Lett., 30, 731 (1989).

14.Hori, H., S. Higuchi, and A. Kamimura. J. Org. Chem., 55, 5900 (1990).

15.Ender, D., A. Haertwig, G. Raabe, and J. Runsink. Angew. Chem. Int. Ed. Engl., 35, 2388 (1996).

16.Feuer, H. The Chemistry of Nitro and Nitroso Groups, part 2, Interscience, New York, p. 131 (1970).

17.Duffy, J. L., J. A. Kurth, and M. J. Kurth. Tetrahedron Lett., 34, 1259 (1993).

18a. Rajender, S. V., K. Mirayam, and W. K. Geroge. Synthesis, 486 (1986).

120 MICHAEL ADDITION

18b. Dauzonne, D., and R. Royer. Synthesis, 348 (1984).

19. Ono, N., K. Sugi, T. Ogawa, and S. Aramaki. J. Chem. Soc., Chem. Commun., 1781 (1993). 20a. Hassner, A., O. Friedmam, and W. Dehaen. Liebigs Ann., 587 (1997).

20b. Yao, C. Y., C. S. Yang, and H. Y. Fang. Tetrahedron Lett., 38, 6419 (1997).

21.Yakura, T., T. Tsuda, Y. Matsumura, S. Yamada, and M. Ikeda. Synlett, 985 (1996).

22.Dulcere, J. P., and E. Dumez. Chem. Commun., 971 (1997).

23.Dumez, E., J. Rodriguez, and J. P. Dulcere. Chem. Commun., 1831 (1997).

24a. Dumez, E., and J. P. Delcere. Chem. Commun., 479 (1998).

24b. Dumez, E., J. Rodriguez, and J. P. Dulcere. Chem. Commun., 2009 (1999). 25. Rodriguez, J. Synlett, 505 (1999).

26a. Perekalin, V. V., E. S. Lipina, V. M. Berestoviskaya, and D. A. Efremov. Nitroalkenes, Conjugated Nitro Compounds; Wiley, Chichester, 1994, Chapter 3, p 169.

26b. Rajappa, S. Tetrahedron, 55, 7065 (1999).

27a. Faulques, M., L. Rene, and R. Royer. Synthesis, 260 (1982). 27b. Rene, L., and R. Royer. Synthesis, 878 (1981).

27c. Tokumitsu, T., and T. Hayashi. J. Org. Chem., 50, 1547 (1985). 27d. Kamimura, A., and T. Nagashima. Synthesis, 694 (1990).

27e. Kamimura, A., and N. Ono. Synthesis, 921 (1988).

28.Ono, N., K, Matsumoto, T. Ogawa, H. Tani, and H. Uno, J. Chem. Soc. Perkin Trans 1, 1905 (1996).

29.Seko, S., and I. Komoto. J. Chem. Soc. Perkin Trans 1, 2975 (1998).

30.Imagawa, K., E. Hata, T. Yamada, and T. Mukaiyama. Chem. Lett., 291 (1996).

31.Ender, D., and M. Klatt. Synthesis, 1403 (1996).

32a. Morris, M. L., and M. A. Sturgess. Tetrahedron Lett., 34, 42 (1993). 32b. Sturgess, M. A., and D. J. Yarberry. Tetrahedron Lett., 34, 4743 (1993).

33.Ender, D., and J. Wiedemann. Synthesis, 1443 (1996).

34.Lucet, D., T. Toupet, T. L. Gall, and C. Mioskowski. J. Org. Chem., 62, 2682 (1997).

35.Adams, H., J. C. Anderson, S. Peace, and A. M. K Ponnell. J. Org. Chem., 63, 9932 (1998).

36.Sabelle, S., D. Lcet, T. L. Gall, and C. Mioskowski. Tetrahedron Lett., 39, 2111 (1998).

37.Shibuya, M., M. Kuretani, and S. Kubota. Tetrahedron Lett., 22, 4453 (1981).

38a. Ranganathan, D., C. B. Rao, and S. Ranganatham. J. Chem. Soc., Chem. Commun., 975 (1979). 38b. Yamada, M., and M. Yamashita. Synthesis, 1026 (1982).

38c. Yamasita, M., M. Sugiura, Y. Tamada, T. Oshikawa, and J. Clardy. Chem. Lett., 1407 (1987). 38d. Yamamoto, H., A. Noguchi, K. Torii, K. Ohno, T. Hanaya, H. Kawamoto, and S. Inokawa. Chem.

Lett., 1575 (1988).

39.Ono, N., N. Bansho, S. Ito, T. Murashima, and T. Ogawa. J. Heterocyclic Chem., 34, 1243 (1997).

40.Somanathan, R., I. A. Rivero, G. Aguirre, M. Ramirez, L. H. Hellberg, and F. Bakir. Synthetic. Commun., 26, 1023 (1996).

41a. Barrett, A. G. M. Chem. Soc. Rev., 20, 95 (1991).

41b. Banks, B., A. G. M. Barrett, and M. A. Russell. J. Chem. Soc., Chem. Commun., 670 (1984). 41c. Barrett, A. G. M., G. G. Graboski, and M. A. Russell. J. Org. Chem., 51, 1012 (1986).

42a. Ashwell, M., and R. F. K. Jackson. J. Chem. Soc., Chem. Commun., 282 (1988). 42b. Ashwell, M., R. F. K. Jackson, and J. M. Kirk. Tetrahedron, 46, 7429 (1990).

43.Barrett, A. G. M., M. C. Cheng, C. D. Spilling, and S. J. Taylor. J. Org. Chem., 54, 992 (1989).

44.Barrett, A. G. M., G. G. Graboski, and M. A. Russell. J. Org. Chem., 50, 2603 (1985).

45.Barrett, A. G. M., and S. Sakdarat. J. Org. Chem., 55, 5110 (1990).

46.Barrett, A. G. M., and S. A. Lebold. J. Org. Chem., 55, 3853 (1990).

47.Barrett, A. G. M., P. D. Weipert, D. Dhanak, R. K. Husa, and S. A. Lebold. J. Am. Chem. Soc., 113, 9820 (1991).

48.Barrett, A. G. M., and S. A. Lebold. J. Org. Chem., 56, 4875 (1991).

49.Barrett, A. G. M., D. C. Braddock, P. W. N., Christian, D. Pilipauskas, A. J. P. White, and D. J . Williams. J. Org. Chem., 63, 5818 (1998).

50.Barrett, A. G. M., J. A. Flygare, and C. D. Spilling. J. Org. Chem., 54, 4723 (1989).

51a. Jackson, R. F. W., J. M. Kirk, N. J. Palmer, D. Waterson, and M. J. Wythers. J. Chem. Soc., Chem. Commun., 889 (1993).

51b. Jackson, R. F. W., N. J. Palmer, and M. J. Wythes. J. Chem. Soc., Chem. Commun., 95 (1994).

Соседние файлы в предмете Химия