Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Калин Физическое материаловедение Том 5 2008

.pdf
Скачиваний:
1037
Добавлен:
16.08.2013
Размер:
8.51 Mб
Скачать

энергии), сечение взаимодействия с ядрами материала, удельный поток (флакс) и интегральный поток (флюенс) каждой составляющей радиационного поля.

Рассмотрим радиационное воздействие на материалы компонентов реакций синтеза легких ядер. Напомним, что такие реакции реализованы в природе (на Солнце), в термоядерной бомбе (неуправляемый синтез) и как управляемый синтез будут осуществлены в термоядерном реакторе будущего. Наиболее приемлемой, с точки зрения сечения взаимодействия легких ядер и температуры, является реакция синтеза ядер дейтерия и трития:

2D + 3T 4He + 1n + 17,58 МэВ. (16.2)

Эта реакция возможна при температуре плазмы более 10 кэВ. Кинетическая энергия образующихся ионов гелия составляет 3,5 МэВ, «термоядерных» нейтронов – 14,08 МэВ, а суммарная энергия (энергетический выход реакции) – 17,58 МэВ. Учитывая, что в процессе синтеза прореагируют далеко не все ядра топлива (дейтерия и трития), то на материалы, окружающие плазму, будут действовать потоки ионов He+, D+, T+, Me+, нейтронов, электронов,-излучения и нейтральных частиц (He0, D0, T0, Me0), образуемых за счет процессов перезарядки ионов в плазме; здесь Me+ и Me0 – ионы и атомы примесных элементов соответственно.

Для оценки результатов радиационного воздействия плазмы на окружающие материалы необходимо знать энергию (точнее – распределение по энергии), сечения взаимодействия с ядрами материала, удельные потоки (флаксы) и интегральные потоки (флюенсы) каждой из компонентов плазмы.

Радиационное воздействие приводит к существенным изменениям СФС исходных материалов. Нейтроны рассеиваются и поглощаются атомами материала, вызывая их смещение из позиций в кристаллической решетке, происходит изменение изотопного состава вследствие радиационного захвата нейтронов (n, ) и других ядерных реакций типа (n, ), (n,n1, ), (n,p), (n,n1,p), (n,d), (n,t), (n,2n), (n,3n), имеющих пороговый характер, т.е. протекающих при энергии нейтронов более некоторого значения (порога). Учитывая высокую проникающую способность нейтронов в материал, они за счет упругого и неупругого соударения с ядрами создают большое

21

число смещенных (первично-выбитых) атомов в объеме твердых тел, в том числе в виде каскадов повреждений. Смещение атомов сопровождается накоплением в материале дефектов: межузельных атомов и вакансий. Вследствие разной подвижности этих дефектов, взаимодействия их между собой (рекомбинация) и с элементами структуры (стоки) конструкционные материалы распухают, испы-

тывают радиационно-ускоренную ползучесть, упрочнение, охрупчи-

вание и структурно-фазовые изменения. Все это может привести к искажению форм и размеров КЭ и, что особенно важно, серьезно изменить свойства и эксплуатационные характеристики облученных материалов. Кроме этого, накопление радиоактивных изотопов и их распад вызывают остаточное энерговыделение. Источниками тепла в основном являются изотопы, испытывающие - и-распады, причем значительное энерговыделение наблюдается в первые 50–100 суток после остановки реактора, что может привести к серьезным последствиям в случае отказа системы охлаждения облученных материалов.

Особенность радиационного воздействия заряженных частиц и других компонентов плазмы состоит в том, что они имеют много меньший пробег в материалах по сравнению с нейтронами и, следовательно, создают радиационные повреждения и изменения состояния материала в приповерхностных слоях. Взаимодействие плазмы с поверхностью приводит к эрозии (и утонению стенки)

вследствие распыления, испарения, шелушения и скалывания.

Таким образом, радиационная составляющая в комплексе воздействия на материалы физических полей, требует тщательного рассмотрения с целью последующего всестороннего анализа последствий этого воздействия на СФС и, следовательно, на свойства материала и эксплуатационные характеристики КЭ. Для этого необходимо знать энергетическое распределение частиц (излучения), флаксы и флюенсы – как основные параметры радиационного воздействия.

Тепловое воздействие. Тепловое воздействие на материалы можно условно разделить на два вида: поверхностное, в виде теплового потока (qs) от внешнего источника тепла к поверхности, и объемное энерговыделение от внутреннего источника тепла (qv) по

22

Рис. 16.1. Схема закрепления конструктивного элемента

объему материала. Любой из этих потоков вызывает повышение температуры материала, возникновение градиентов температуры по сечению КЭ. В результате теплового воздействия изменяются размеры (и объем) и возникают внутренние термические напряжения в материале, а при значительных изменениях температуры, и состояние материала. При наличии qs и qv термические напряжения в бесконечном цилиндре с толщиной стенки t можно оценить по формуле:

 

 

 

E

 

 

 

q

t2

 

 

 

 

TT

 

 

 

q

t

v

 

 

,

(16.3)

 

 

 

 

 

 

2(1

 

 

s

 

2

 

 

 

 

 

 

)

 

 

 

 

 

где – коэффициент термического расширения; – коэффициент теплопроводности; – коэффициент Пуассона материала.

Как видно из формулы (16.3) при ненулевой толщине t всегда возникает градиент температур, а при градиенте температур всегда

возникают термические напряжения.

Термические напряжения могут возникнуть при нагревании материала и в случае, если КЭ жестко закреплен так, что сдерживает термическое расширение, как это показано на рис. 16.1.

В этом случае термические напряжения будут пропорциональны коэффициенту термического расширения , исходной длине l0 и величине

нагревания T КЭ, т.е. TT l0 T.

Из изложенного выше видно, что для оценки теплового воздействия на материалы необходимо знать величины

плотности мощности тепловых потоков и мощность объемного энерговыделения. Результат теплового воздействия на материалы будет определяться их теплофизическими свойствами, в частности,

и .

Электромагнитное воздействие. Электромагнитные поля и электрические токи могут оказать заметное влияние на СФС материалов тех конструктивных элементов устройств, в которых используются высокие мощности электромагнитных потоков. Прежде чем рассматривать параметры электромагнитного воздействия, на-

23

помним основные сведения о природе электромагнитных полей и электрических и магнитных свойствах материалов.

Электрический ток – это направленное движение зарядов в веществе и вакууме. Носителем заряда в металлах являются свободные (валентные) электроны – электроны проводимости. Силой, создающей упорядоченное (направленное) движение электронов в проводнике, является электрическое поле внутри проводника, зависящее от напряжения на его концах. Электрический ток измеряют силой и плотностью тока, причем плотность есть сила тока, де-

ленная на сечение проводника (А/м2). Плотность тока в металличе-

ских проводниках может достигать высоких значений. В мощных линиях передачи электричества (ЛЭП) транспортируется ток порядка 104 А, что соответствует плотности 107 А/м2. Кстати, такие же плотности тока в молниях. Критическая (максимально допустимая) плотность тока в классических сверхпроводниках (например, Nb3Sn) при отсутствии внешнего магнитного поля и при температуре 4,2 К находится в пределах 109–1010 А/м2.

Протекая по проводнику, электрический ток нагревает металл (согласно закону Джоуля–Ленца выделяется тепло Q = I2R, где I – сила тока, R – сопротивление току) и создает вокруг проводника магнитное поле. На расстоянии r от оси прямолинейного проводника с током напряженность магнитного поля H = I/2r. Магнитное поле в среде характеризуется магнитной индукцией, связанной с напряженностью соотношением В = Н, где – магнитная проницаемость среды. Известно, что изменение магнитного поля, т.е. магнитной индукции поля вызывает в проводнике (проводящей среде) электрический ток. Одним словом, электрическое и магнитное поля взаимосвязаны, т.е. являются неотъемлемыми компонентами электромагнитного поля. Однако отметим, что постоянное магнитное поле может рассматриваться и независимо от электрического.

Предметами практического использования являются электромагнитные явления, электрический ток и магнитные поля. Диапазон получаемых полей охватывает значения напряженности (индукции) 10–5–109 А/м. Средние поля электромагнитов с сердечниками порядка (1–5)·106 А/м, сверхпроводящих магнитов до 12·106

24

А/м, сверхпроводящих криогенных магнитов до 40·106 А/м. Более сильные поля можно получить в короткоимпульсных режимах за время импульса в пределах (10–3–10–6) с. Учитывая, что плотность энергии магнитного поля пропорциональна квадрату напряженности, в сильных и сверхсильных полях концентрируются очень большие плотности энергии, и поэтому проводники в таких полях испытывают действие высоких температур и давлений. Например,

при напряженности 32·106 А/м давление магнитного поля превы-

шает предел текучести большинства металлов.

Действие магнитных полей зависит от природы материалов, т.е. того, являются ли они диамагнетиками, парамагнетиками или ферромагнетиками. Хорошо известно, что ферромагнитные сплавы способны многократно усиливать магнитное поле. При намагничивании ферромагнитных металлов и сплавов возникает явление магнитострикции – обратимого изменения линейных размеров. Под действием внешнего магнитного поля изменяется электросопро-

тивление (как правило, увеличивается), теплофизические свойства

(теплопроводность снижается). Импульсное магнитное поле напряженностью более 5·107 А/м приводит к значительному повышению предела прочности некоторых коррозионностойких сталей.

Значительные изменения свойств вызывают электрические токи. Напомним, что при пропускании тока по проводнику вокруг него возникает магнитное поле, силовые линии которого лежат в плоскости, перпендикулярной оси проводника. Магнитное поле оказывает давление на поверхность проводника (стержня), величину которого можно оценить по формуле:

pp = 0,5 H 2. (16.4)

Анализ опубликованных данных свидетельствует о том, что пропускание тока (подчеркнем, что эффект джоулевого нагрева и теплового воздействия исключается тем или иным способом охлаждения проводника) сопровождается рядом изменений в металлических материалах. При пропускании постоянного тока уменьшается модуль упругости (Ag, Cu, Au, Fe) на величины до 15 %, увеличивается предел выносливости материалов, изменяется скорость ползучести, прочность и твердость. С понижением температуры ниже комнатной эффект электромагнитного воздействия на свойст-

25

ва, зависящие от состояния электронной подсистемы металлов, усиливается.

Из-за разности магнитных полей, наведенных током, текущим по стержню, в центре и вблизи поверхности ток будет оттесняться к поверхности образца. Это – так называемый скин-эффект. Толщина скин-слоя ( – это расстояние от поверхности проводника, на котором амплитуда плотности тока падает в e (2,72) раз) пропорциональна удельному электросопротивлению 1/2 и коэффициенту теплопроводности –1/2. Неравномерное распределение электрического тока может вызвать неравномерность температурного поля по сечению стержня, т.е. можно говорить о термическом скин-слое, в результате которого может возникнуть градиент термических напряжений. Этот градиент будет тем больше, чем сильнее скин-эффект (меньше толщина скин-слоя ).

Влияние импульсного магнитного поля на поведение металлического стержня обусловлено диссипацией (рассеянием) энергии поля, проникшего в материал. Эта диссипированная энергия магнитного поля проявляется в двух эффектах: пондеромоторном (магнитное давление) и термическом (нагревание). Степень проявления этих эффектов зависит от амплитуды напряженности и глубины проникновения магнитного поля. Давление p(r,t) импульсного магнитного поля напряженностью Н на глубине r равно

p(r,t) = pp 0,5 H 2(r,t). (16.5)

Видно, что пондеромоторный эффект зависит от степени затухания волны магнитного поля H(r,t). Более того, магнитное давление действует на глубинах, равных (0,78–0,37) , где – толщина скин-слоя. В случае сильного скин-эффекта возможно появление градиента напряжений по сечению стержня в результате неравномерного температурного поля.

Из сказанного выше очевидно, что электромагнитное воздействие может вызывать деформацию металлов и сплавов. Воздействуя на электронную подсистему металла, электромагнитное поле создает по меньшей степени два канала влияния на механические свойства: во-первых, нагрев материала со всеми вытекающими отсюда последствиями; во-вторых, возбужденная электронная под-

26

система может оказывать влияние (и это показано теоретически) на дислокации, ускоряя их движение. Это возможно в случае, когда скорость движения электронов превышает скорость дислокаций.

Рассмотрим кратко действие электрического тока и внешнего магнитного поля на механические свойства металлов и сплавов. Экспериментально показано, что воздействие импульсного электрического тока в процессе упругопластического деформирования металла приводит к значительному увеличению пластичности и снижению сопротивления деформированию. Внешнее механическое воздействие необходимо как стартовое напряжение для дислокаций. Явление увеличения пластичности металлов, вызванное пропусканием тока, получило название эффекта электропластичности (ЭПЭ). В специальной литературе по ЭПЭ описаны многие предполагаемые механизмы эффекта. Здесь же отметим, что прямое физическое действие тока (помимо теплового и пондеромоторного) является самостоятельным эффектом. В основе его лежит электрон-дислокационное взаимодействие, приводящее к срыву дислокаций со стопоров (препятствий) и увлечению их движущимися электронами проводимости. В пользу этой трактовки ЭПЭ свидетельствуют данные о том, что величина деформации, стимулированной импульсом электрического тока, на порядок больше деформации, вызванной эквивалентным нагревом. Направленное движение электронов затрудняет локализацию деформации при циклическом механическом нагружении, что в итоге проявляется в увеличении выносливости (сопротивления усталости) материала.

Наложение постоянного внешнего магнитного поля на исследуемый образец может вызвать возмущение электронной подсистемы металлов и последующее изменение, например, механических свойств вследствие возрастания торможения движения дислокаций со стороны электронов проводимости, фононов и магнонов. Обычно эти эффекты проявляются в очень чистых металлах при достаточно сильных магнитных полях (напряженностью 8 МА/м и более) и низких температурах.

С другой стороны, известны экспериментальные данные о снижении напряжения течения ферромагнетиков (например, никеля) в результате воздействия переменных магнитных полей напряженно-

27

стью до 64 кА/м. Это явление известно как магнитопластический эффект (МПЭ). В основе механизма МПЭ лежит предположение о роли границ магнитных доменов как мест концентрации атомов примесей и стопоров движению дислокаций, которые при наложении переменного магнитного поля осциллируют, при этом снижается энергия активации движению дислокаций. В неферромагнетиках МПЭ может быть обусловлен повышением температуры материала под действием переменного магнитного поля.

Влияние импульсного магнитного поля на механические свойства материала носит пороговый характер. В режиме активного растяжения, например меди и алюминия, при комнатной температуре импульс магнитного поля вызывает скачкообразный прирост деформации, при этом заметно снижается величина напряжения.

В заключение отметим, что последствием воздействия на материалы электромагнитных полей являются изменение свойств и разрушение материала. Рассмотрим основные параметры, необходимые для анализа результатов воздействия импульсных электрических токов (ИЭТ) и сильных магнитных полей (СМП). При воздействии ИЭТ изменения свойств материалов зависят от режимов (сила тока, плотность тока) и параметров импульса (амплитуда тока, длительность импульса, число импульсов). Оценку воздействия ИЭТ целесообразно проводить по результатам испытаний или литературным данным, полученным при режимах и параметрах импульса, соответствующих эксплуатационным условиям. При воздействии СМП могут наблюдаться изменения свойств и происходить разрушение материалов в результате теплового и пондеромоторного эффектов. Влияние последнего максимально при воздействии импульсным магнитным полем. Основными параметрами воздействия являются напряженность магнитного поля (магнитная индукция) и параметры импульса (амплитуда поля, длительность импульса, число импульсов).

Силовое воздействие. На конструктивные элементы в реальных конструкциях могут действовать различные силы, создающие в материале напряженное состояние. Источниками напряжений могут быть механические нагрузки (контактное давление, давление среды или теплоносителя, вес конструкции, вибрационные колебания и

28

др.), тепловые потоки (температурное расширение заневоленных КЭ, градиенты температуры в толстых КЭ), изменения электромагнитных полей (пондеромоторные силы) и радиационное формоизменение (распухание, радиационный рост) КЭ.

В качестве справки приведем данные о достижимых величинах силового давления на твердое тело. Механическое нагружение позволяет достигать давлений до 109 Па, взрыв химических веществ – до 1012 Па, давление лазерного луча – до 1013 Па, а в режиме абляции вещества (интенсивного испарения–выброса) при имплозии (т.е. всестороннем воздействии) – до 1018 Па. Это необходимо иметь в виду при анализе параметров силового воздействия на КЭ

иоценке величин напряжений, возникающих в материале КЭ. Важную роль играет степень равномерности (по площади) приложения нагрузки и характер нагружения (во времени): постоянный, переменный, периодический и т.д. При оценке напряженного состояния, особенно при механическом нагружении, важно знать вид нагружения (деформации): растяжение, сжатие, изгиб или кручение.

Воздействие окружающей среды. Конструктивные элементы любой техники постоянно находятся в контакте с окружающей средой. Среда оказывает влияние на СФС поверхностного слоя, а при длительном контакте и на СФС в объеме материала. При анализе воздействия среды необходимо установить основной механизм взаимодействия атомов материала с компонентами среды. Это может быть химическое, электрохимическое или металлургическое взаимодействие (растворение, образование соединений) или их комбинация. Поэтому важно оценить физико-химическую активность среды. Результатом взаимодействия среды с материалами является их коррозия, разновидности которой рассматриваются в специальной литературе. В потоках движущейся жидкости или воздуха возможны явления эрозии материала или кавитационного износа. При трении важно оценить степень возможного износа КЭ. Необходимо учитывать и то, что в результате воздействия окружающей среды могут измениться как геометрические размеры, так

исвойства материала. Наиболее важными параметрами воздействия среды, по-видимому, являются температура, давление, время

29

контакта и временной режим (стационарность, периодичность и др.).

16.1.2. Анализ поэлементного и совместного действия конструктивных составляющих

Анализ конструкции проводится с целью выявления наиболее напряженных мест в наиболее нагруженных или энергонапряженных конструктивных элементах и устройстве в целом. При этом оценивается рациональность компоновки устройства, уточняются агрегатные состояния контактирующих веществ с выбираемым материалом в эксплуатационных условиях. Важным элементом анализа конструкции является выявление характера сопряжения контактирующих КЭ, уточнение вида контакта (давление, трение, постоянство контактирования), оценка продолжительности контакта.

16.1.3. Определение технологии изготовления отдельных деталей и конструкции в целом

Технология изготовления КЭ в значительной степени зависит от природы материала, его механических и теплофизических свойств, так как предполагает то или иное формоизменение исходных заготовок путем обработки давлением (ковки, прессования, вытяжки, прокатки и т.д.), резанием, стабилизирующей термической (или термохимической) обработки и финишной обработки (шлифование, полировка и т.д.). Следовательно, выбор материала тесно связан с выбором технологии изготовления и обработки КЭ. Поэтому важными для анализа являются форма и размеры (габариты) КЭ, особенности конструкции и, в частности, места концентрации напряжений (переходы от одной толщины к другой, наличие отверстий, ребер жесткости и т.д.). При выборе технологической цепочки (технологического маршрута) обработки КЭ, включая получение заготовок, обработку до окончательного вида, сборку (при необходимости) необходимо минимизировать материалоемкость и стоимость КЭ. Этот этап анализа должен заканчиваться разработкой полного технологического маршрута создания КЭ и выбором наиболее технологичных материалов.

30