Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

А.Н. Соловицкий Уравнивание полигонометрии коррелатным способом

.pdf
Скачиваний:
68
Добавлен:
19.08.2013
Размер:
178.28 Кб
Скачать

Министерство образования Российской Федерации Государственное учреждение

Кузбасский государственный технический университет

Кафедра маркшейдерского дела и геодезии

УРАВНИВАНИЕ ПОЛИГОНОМЕТРИИ КОРРЕЛАТНЫМ СПОСОБОМ

Методические указания для лабораторной работы №5 по курсу «Математическая обработка результатов геодезических из-

мерений» для студентов специальности 311100 – «Городской кадастр»

Составители А. Н. Соловицкий А.Г. Изместьев

Утверждены на заседании кафедры Протокол № 55 от 24.10.02

Рекомендованы к печати учебно-методическойкомиссией специальности 311100 Протокол № 23 от 11.11.02

Электронная копия находится в библиотеке главного корпуса ГУ КузГТУ

Кемерово 2003

1

Введение

Полигонометрия является доминирующим классическим методом построения опорных сетей для обеспечения ведения кадастра. Её уравнивают по методу наименьших квадратов с использованием способа условных уравнений. Способ уравнений погрешностей почти не применяется вследствие того, что в полигонометрии число определяемых пунктов почти всегда больше, чем исходных пунктов. Например, в одиночном ходе, опирающемся на жесткие пункты и дирекционные направления, имеющем 5 определяемых пунктов, пришлось бы составлять 10 нормальных уравнений, тогда как при применении способа условных уравнений число нормальных уравнений было бы только 3.

Следующая особенность полигонометрии состоит в том, что при уравнивании приходится считаться с необходимостью неравноточности угловых и линейных измерений.

В методических указаниях изложены теоретические основы уравнительных вычислений полигонометрии и пример их реализации на ПЭВМ.

Лабораторная работа

Уравнивание полигонометрии коррелатным способом

Цель работы: изучить методику математической обработки полигонометрии.

1. Изучить уравнивание полигонометрии коррелатным способом.

Уравнивание полигонометрии

Строгое уравнивание полигонометрического хода, опирающегося на пункты с исходными координатами и направлениями, сводится к составлению трех условных уравнений и к решению трех нормальных уравнений. В ходе, показанном на рис. 1, составляются:

-условное уравнение дирекционных углов;

-условное уравнение абсцисс;

-условное уравнение ординат.

Обозначая поправки углов (β) и считая углы левыми по ходу, ус-

ловное уравнение углов запишем в виде

 

(β1)+(β2)+(β3)+...+(βn )+(βn+1)+ωβ =0

(1.1)

2

или

n+1

(βi )+ωβ =0 .

1

Свободный член уравнения вычисляется по формуле

n+1

ωβ =αн+βi+k180o α2к.

1

Условное уравнение абсцисс будет иметь вид

(х1 )+(х2 )+...+(хn )+ωx =0 ,

в котором свободный член

n

ωx=x +xнxк.

1

Условное уравнение ординат будет иметь вид

(у1 )+(у2 )+... +(уn )+ωу =0 ,

свободный член

n

ωу=у+унук.

1

(1.2)

(1.3)

αnβ

β

α2

β αn β

αk

α1

 

n,

Рис. 1. Одиночный ход полигонометрии

В формулах (1.1), (1.2) и (1.3) обозначены: n – число сторон хода, х,у – приращения координат,хн,ун – координаты начального же-

сткого пункта, хк,ук – координаты конечного жесткого пункта,αн

дирекционный угол в начале хода, αк – дирекционный угол в конце

хода.

В условных уравнениях (1.2) и (1.3) необходимо поправки приращений координат выразить через непосредственно измеренные

3

углы и стороны хода и их поправки, принимая во внимание следующие соотношения:

х=scosα,

y= ssin α ,

(xi)= (si)cosαiρ1 y(αi),

(yi)= (si)sinαi+ ρ1 xi(αi),

(α1 )=(β1 ),

(α2 )=(β1 )+(β2 ),

(α3 )=(β1 )+(β2 )+(β3 ),

. . . . . . . . . . . . . . . . . . . . . .

(αn )=(β1 )+(β2 )+(β3 )+...+(βn ).

Учитывая написанные выше выражения, (1.2) и (1.3) представим в виде

(1.4)

условные уравнения

n

1

n

n

n

 

 

(si)cosαi

 

(β1 )yi+(β2 )yi+...+(βn)yi

+ωx =0,

 

1

ρ

1

2

n

 

 

n

1

n

n

n

 

 

 

(si)sinαi+

 

(βi)xi+(β2 )xi+...+(βn)xi

+ωy =0,

(1.5)

ρ

1

 

1

2

n

 

 

 

или

 

 

 

1

 

 

 

 

 

 

n

 

 

 

n+1

 

 

 

 

 

(si)cosαi

(βi)(yn+1 yi)+ωx= 0,

 

 

 

 

ρ

 

 

 

 

1

 

 

 

1

 

 

 

 

 

n

 

 

1

 

n+1

 

 

 

 

 

(si )sinαi

+

 

(βi)(xn+1 xi)+ωy= 0.

 

 

 

(1.6)

 

ρ

 

 

 

1

 

 

1

 

 

 

 

 

(Условные уравнения (1.1), (1.5) и (1.6) составлены применительно к обозначениям рис.1).

В той же форме эти условные уравнения пишутся при уравнивании свободных и несвободных полигонометрических ходов любой конструкции (пересекающихся ходов с образованием узловых пунктов, полигонов, комбинаций ходов и полигонов). В замкнутых ходах (полигонах) свободные члены вычисляют по следующим формулам:

 

 

4

 

в условных уравнениях дирекционных углов-

 

 

n

 

 

ωβ

=β (n 2) 180o,

(1.7)

 

1

 

 

в условных уравнениях абсцисс-

 

ωx

= n

xi,

(1.8)

 

1

 

 

в условных уравнениях ординат-

 

ωy

=n

yi.

(1.9)

 

1

 

 

При составлении нормальных уравнений принимают веса углов и сторон. Обычно принимают вес углов равным единице, а вес сторон

m2

рs = mβ2 , (1.10)

s

где mβ иms - средние квадратические ошибки углов и сторон. В вычисления вводят величину

q =

1

=

ms2

 

 

 

.

(1.11)

ps

mβ2

Для составления нормальных уравнений предварительно составляется таблица коэффициентов условных уравнений. Общий вид формы записи коэффициентов условных уравнений дан в табл.1

Таблица 1

Коэффициенты условных уравнений

Измеренные

 

Виды условий

 

величины

дирекционных

 

абсцисс (в)

ординат (с)

 

углов(а)

 

 

 

β

 

 

 

 

S

 

 

 

 

Σ

 

 

 

 

5

Используя табл.1, определяют коэффициенты нормальных уравнений [aa], [вв], [сс],[ав],[ас],[вс]. Нормальные уравнения имеют следующий вид:

[aa]k1+ [ав]k2+ [ас]k3β =0,

[aв]k1+ [вв]k2+ [вс]k3х =0, (1.12)

[aс]k1+ [вс]k2+ [сс]k3у =0.

Из решения системы уравнений (1.12) определяют коррелаты, а затем поправки в измеренные величины. Величины поправок в общем виде равны

(β)iik1ik2+cik3,

(1.13)

(S)iik1ik2+cik3.

 

Поправки приращений координат можно вычислить по уравненным дирекционным углам и уравненным длинам сторон, но их удобнее вычислить по дифференциальным формулам

(x

)= (s

)cosα

i

1

 

y

(α

i

),

 

 

 

 

i

i

 

 

 

 

ρ

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(y

)= (s

)sinα

 

 

 

1

 

 

(α

 

 

).

 

(1.14)

 

 

+

 

x

 

 

 

i

 

i

 

 

 

 

i

i

 

 

ρ

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Координаты вершин хода вычисляют последовательным суммированием координат начального пункта и уравненных приращений по формулам

xi

yi

=x1

=y1

+ xi

 

i 1

 

 

1

 

 

 

 

(1.15)

+ yi .

i 1

 

 

1

 

 

2. Выполнить уравнивание хода полигонометрии согласно заданному варианту. Исходные данные приведены в [1]. Уравнивание производится на ПЭВМ. Программа уравнивания введена в компьютер. Обращение к программе “Вариант А” или “Вариант В” согласно варианту. Исходные данные, необходимые для вычисления согласно заданному варианту, вводятся студентом самостоятельно, они выделены красным цветом. Исходными данными являются:

начальный дирекционный угол;

конечный дирекционный угол;

координаты Х и У начального пункта;

6

координаты Х и У конечного пункта.

Ввиду большого объёма вычислений приведены лишь основные фрагменты (табл. 2 –5).

Таблица

Пример А 2

N

Измеренные

Дирекционные

Горизонтальные

 

углы

углы

проложения

 

 

135,0000000

 

1

280,3558333

235,3558333

579,021

2

127,5138889

182,8697222

413,845

3

204,9686111

207,8383333

380,63

4

179,0027778

206,8411111

559,528

5

116,6463889

143,4875000

568,010

6

201,9986111

165,4861111

385,000

7

121,4913889

106,9775000

380,411

8

291,0138889

217,9913889

 

 

 

37,9913889

 

37

59

29.0

 

 

 

37

59

50 Конечный дирекционный угол

 

Wd=-21.0

 

 

Таблица 3

 

 

Вычисление координат

 

 

 

 

 

 

 

 

 

 

Приращения

 

Координаты

x

 

y

 

Х

У

 

 

 

 

 

22340,000

52168,000

 

 

 

 

 

 

 

-329,161

 

-476,359

22010,839

51691,640

 

-413,326

 

-20,719

 

21597,513

51670,921

 

-336,579

 

-177,746

21260,934

51493,175

 

-499,246

 

-252,639

20761,688

51240,538

 

-456,525

 

337,965

 

20305,163

51578,503

 

-372,713

 

96,487

 

19932,450

51674,990

 

-111,079

 

363,832

 

19821,371

52038,822

 

 

 

 

 

19820,932

52038,73

 

 

 

 

 

0,439

0,091

 

7

Таблица 4

Нормальные уравнения

7

-0,00062627

-0,012210656

-21

 

4,56716848

0,333394159

0,429

 

 

2,432868661

0,091

Таблица 5

Решение нормальных уравнений

аа

 

ab

 

 

ac

 

 

W

 

S

 

7

-0,000626

-0,012211

 

-21

 

-14,0128369

 

-1

8,9467E-05

0,0017444

 

3,000000

 

2,001834

 

 

4,567168477

0,333394159

 

0,429

 

5,32956264

 

 

4,567168421

0,333393067

 

0,4271212

 

5,32830895

 

 

 

 

-1

-0,0729978

 

-0,09352

 

-1,166655

 

 

 

 

 

 

2,432868661

 

0,091

 

 

 

 

 

 

 

 

2,408510414

 

0,0231891

 

 

 

2,99997

-00,0928171

 

-1

 

-0,00963

 

 

 

 

k1

k2

 

 

 

 

k3

 

 

 

 

Вычисление поправок для варианта В

Таблица 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vb

 

vs

Vdx

 

vdy

 

 

 

 

0.11

 

 

0.009

-0.008

 

0.004

 

 

 

 

 

 

0.11

 

 

-0.020

0.010

 

-0.018

 

 

 

 

 

 

0.11

 

 

0.005

-0.004

 

0.003

 

 

 

 

 

 

0.11

 

 

-0.035

0.006

 

-0.034

 

 

 

 

 

 

0.11

 

 

0.037

-0.036

 

-0.007

 

 

 

 

 

 

0.11

 

 

0.042

-0.039

 

-0.014

 

 

 

 

 

 

0.11

 

 

0.009

-0.008

 

0.004

 

 

 

 

 

 

0.11

 

 

0.000

0.000

 

0.000

 

 

 

 

 

 

0.11

 

 

-0.013

0.008

 

-0.010

 

 

 

 

 

 

1.00

 

 

0.034

-0.071

 

-0.073

 

 

 

 

8

Заключение

Малое количество геометрических условий жесткости в полигонометрических построениях создает условия, при которых уравнивание сравнительно мало повышает точность уравненных элементов сети (углов и сторон). Поэтому точность полигонометрической сети определяется почти исключительно точностью угловых и линейных измерений.

В связи с этим основная задача уравнительных вычислений в полигонометрии состоит в устранении невязок в сети, причем ликвидация невязок должна быть проведена так, чтобы не допустить искажений измеренных элементов поправками произвольной величины, формально устраняющими невязки.

Для уравнивания полигонометрических сетей существует несколько способов. Применение ПЭВМ позволяет избежать многих затруднений уравнительных вычислений и дает возможность использовать для уравнивания полигонометрических сетей способы, основанные на методе наименьших квадратов.

Список литературы

1.Обработка равноточных и неравноточных измерений: Методические указания / Сост.: А.Н. Соловицкий; ГУ Кузбас. гос. техн. ун-т.

Кемерово, 2002. – 18 с.

2.Большаков В.Д. Практикум по теории математической обработки геодезических измерений / В.Д. Большаков, Ю.И. Маркузе. – М.:

Недра, 1984. – 352 с.

9

Составители Александр Николаевич Соловицкий Изместьев Анатолий Григорьевич

УРАВНИВАНИЕ ПОЛИГОНОМЕТРИИ КОРРЕЛАТНЫМ СПОСОБОМ

Методические указания для лабораторной работы №5 по курсу «Математическая обработка результатов геодезических измерений» для студентов специальности 311100 – «Городской кадастр»

Редактор Е.Л. Наркевич

Подписано в печать 13.11.02.

Формат 60×84/16. Бумага офсетная. Отпечатано на ризографе.

Уч.-изд.л. 0,5.

Тираж 50 экз. Заказ ГУ КузГТУ.

650026, Кемерово, ул. Весенняя, 28. Типография ГУ КузГТУ.

650099, Кемерово, ул. Д.Бедного,4а.

Соседние файлы в предмете Маркшейдерское дело и геодезия