Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizich_osnovy_elektrotekhniki.doc
Скачиваний:
24
Добавлен:
27.05.2015
Размер:
292.35 Кб
Скачать

13

Физические основы электротехники

Электромагнитное поле – это особый вид материи, проявляющей свои свойства с электрическими зарядами. Заряженные частицы – основная структурная часть атомов и молекул веществ. Заряженные частицы окружены электромагнитным полем. Основное свойство заряженных частиц – их заряд. Заряд – есть характеристика вещественного носителя. Электрические заряды взаимодействуют между собой посредством магнитного поля. Т.о., каждый заряд является источником электромагнитного поля и в то же время является объектом воздействия от других зарядов. Заряд и электромагнитное поле неразделимы. Электрический заряд – физическая величина, определяющая интенсивность электромагнитного взаимодействия.

Электромагнитное поле имеет две взаимосвязанные стороны: электрическое поле и магнитное поле. Вообще-то поле едино, но при определённых условиях можно рассматривать одну из его сторон.

В общем случае электрическое и магнитное поля взаимосвязаны – единое электромагнитное поле. В стационарных полях каждое из них имеет относительную самостоятельность и может рассматриваться отдельно.

В качестве количественной оценки электромагнитного поля взято воздействие поля на заряд. Сила взаимодействия поля и заряда определяется силой Лоренца, учитывающей две стороны электромагнитного поля: электрическое и магнитное поля:

.

Здесь: q– заряд,- вектор напряжённости электрического поля,- вектор магнитной индукции,- скорость движения заряда относительно выбранной системы отсчёта.

1. Эл. полем называют одну из двух сторон электромагнитного поля, которая воздействует на неподвижный электрический заряд силой, пропорциональной величине заряда (и независящей от скорости движения):

.

Основной физической величиной, характеризующей силовое действие электрического поля в каждой точке и в каждый момент времени является вектор напряжённости электрического поля (силовая хар-ка эл. поля).

2.Магнитным полем называют одну из двух сторон электромагнитного поля, которая воздействует на движущийся электрический заряд силой, пропорциональной величине заряда и скорости его движения:

.

Основной физической величиной, характеризующей силовое действие магнитного поля в каждой точке и в каждый момент времени является вектор магнитной индукции .

Электрическое поле

Электрические заряды являются источниками электрического поля. Электрическое поле характеризуется напряжённостью электрического поля. Напряжённость электрического поля – векторная величина, определяющая силу, действующую на заряженное тело со стороны электрического поля зарядаq. Численно она равна отношению силы, действующей на заряженную частицу (пробное тело с зарядомqпр), к её заряду:

, В/м,

где Fэ– сила, определяемая законом Кулона;r– расстояние между центрами зарядов;Ф/м – электрическая постоянная (диэлектрическая проницаемость вакуума).

Направление напряжённости электрического поля совпадает с направлением силы, действующей на частицу (пробное тело) с положительным знаком (тела с одинаковыми зарядами отталкиваются, а тела с зарядами разных знаков притягиваются).

Связь между напряжённостью электрического поля и зарядом выражает теорема Гаусса для электрического поля в вакууме:

.

Поток вектора напряжённости электрического поля сквозь произвольную замкнутую поверхность в вакууме пропорционален заряду, находящемуся внутри этой поверхности.

Электрическое поле в веществе.

Если внешнее электрическое поле создаётся в диэлектрике, то под действием сил этого поля в диэлектрике происходит смещение связанных зарядов в молекулах вещества ("+" - в направлении линий поля, "" - в противоположную сторону). Смещение зарядов в веществе под действием сил электрического поля называется поляризацией вещества.

Степень поляризации диэлектрика при воздействии электрического поля оценивается вектором поляризованности . Поляризованность тем больше, чем сильнее электрическое поле, зависит и от свойств диэлектрика. Для однородного по всем направлениям (изотропного) диэлектрика вектор поляризованностипропорционален вектору напряжённости электрического поля в диэлектрике:

,

где - относительная диэлектрическая восприимчивость вещества (0, 0 – для вакуума).

Электрическое поле в диэлектрике представляет собой наложение двух полей – внешнего и внутреннего. Внутреннее поле возникает только при наличии внешнего поля за счёт поляризации диэлектрика и в большинстве случаев исчезает при отсутствии внешнего поля (имеются диэлектрики будучи поляризованными внешним полем, сохраняют остаточную поляризацию – сегнетоэлектрики и электреты).

Для характеристики электрического поля в веществе вводят понятие вектора электрического смещения :

.D=Кл/м2.

С учётом относительной диэлектрической восприимчивости диэлектрика, получим:

.

Здесь - абсолютная диэлектрическая проницаемость вещества;- относительная диэлектрическая проницаемость вещества.

Относительная диэлектрическая проницаемость вещества характеризует степень способности вещества поляризовываться (во сколько раз поле в диэлектрике слабее, чем в пустоте). Для всех веществ ; для вакуума(воздух; бумага кабельная; масло минеральное; картон; резина; слюда; стекло).

Тогда получаем обобщённую теорему Гаусса:

.

Поток вектора электрического смещения сквозь произвольную замкнутую поверхность равен свободному заряду, находящемуся внутри этой поверхности.

Для большинства веществ относительная диэлектрическая проницаемость постоянна, т.е. практически не зависит от напряжённости электрического поля (линейные диэлектрики). Эта линейность имеет ограничение сверху (предельная напряжённость электр. поля – пробой диэлектрика; величина напряжённости эл. поля, при которой наступает пробой называют электрической прочностью диэлектрика – для воздуха Епр=30кВ/см).

Из обобщённой теоремы Гаусса для однородной среды (a= Сonst):

.

Или

,.

Если r= 1, то получаем исходную теорему Гаусса.

Потенциал, напряжение электрического поля.

Энергетической характеристикой поля является потенциал. Электрическое поле неподвижных зарядов (электростатическое поле), поле постоянных токов (стационарное электрическое поле) являются потенциальными: потенциал не зависит от формы пути, по которому перемещается заряд из одной точки в другую. В электрической цепи переменного тока имеет место квазистационарное электрическое поле. Это позволяет охарактеризовать потенциальное электрическое поле в каждой его точке скалярной величиной, являющейся функцией координаты – потенциалом.

Потенциал любой точки электрического поля (точка " N") численно равен работе сил поля по перемещению единичного положительного заряда из данной точки поля в точку, потенциал которой равен нулю (поверхность земли или бесконечно удалённая точка):

.

Осуществляется нормирование потенциала на нуль в бесконечности.

Электрическое напряжение – есть работа сил поля по перемещению единичного положительного заряда (q= 1Кл) между точками поля:

.

Разность потенциалов (напряжение) есть физическая величина, равная линейному интегралу от вектора напряжённости потенциального поля взятому от одной точки к другой, и независящая от выбора пути интегрирования между этими точками.

Основной характеристикой электрического поля является вектор напряжённости. Для потенциального поля можно пользоваться скалярной характеристикой – потенциалом, как энергетической характеристикой.

В электрической цепи постоянного тока существует стационарное электрическое поле – в отличие от электростатического поля неподвижных зарядов. Оно поддерживается ЭДС источников энергии. Источник ЭДС непосредственно создаёт и поддерживает избыточные заряды, распределённые по проводнику. Заряды в свою очередь поддерживают стационарное электрич. поле. Эти избыточные заряды распределяются по поверхности проводов (не внутри !!!), а источник исключает самонейтрализацию.

Стационарное электрическое поле в отличие от электростатического создаётся и поддерживается источником ЭДС, и это поле существует не только в диэлектрике вокруг проводников, но и внутри проводников. Стационарное электрическое поле также как и электростатическое является потенциальным (в области вне источников ЭДС).

В электрической цепи переменного тока имеет место квазистационарное эл. поле, если скорость изменения электрического поля и длина линии невелики. Условием квазистационарности переменного тока (и создаваемого им поля) является требование, чтобы время распространения волны вдоль заданной длины провода было значительно меньше периода:

,

где - длина провода, с = 300 000 км/с - скорость света в вакууме; Т = 1/f- период изменения тока,- длина волны (приf= 50 Гц Т = 0,02 с,= 6 000 км).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]