Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Информатика / Лекция 4 Понятие о системах счисления

.doc
Скачиваний:
122
Добавлен:
31.05.2015
Размер:
163.84 Кб
Скачать

Система счисле́ния — символический метод записи чисел, представление чисел с помощью письменных знаков. Системы счисления подразделяются на позиционные, непозиционные и смешанные.

Непозиционная система счисления — система, в которой, значение символа не зависит от его положения в числе. Непозиционные системы счисления возникли раньше позиционных систем. Они использовались в древности римлянами, египтянами, славянами и другими народами. Примером непозиционной системы счисления, дошедшей до наших дней, служит римская система счисления.

Цифры в римской системе обозначаются различными знаками: 1—I; 3—III; 5—V; 10—X; 50—L; 100—C; 500—D; 1000—M. Для записи промежуточных значений существует правило: каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а слева — вычитается из него. Так, IV обозначает 4, VI—6, LX— 60, XC—90 и т.д. Основной недостаток непозиционных систем — большое число различных знаков и сложность выполнения арифметических операций.

Позиционные системы счисления

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

Под позиционной системой счисления обычно понимается -ричная система счисления, которая определяется целым числом , называемым основанием системы счисления. Целое число без знака в -ричной системе счисления представляется в виде конечной линейной комбинации степеней числа :

, где  — это целые числа, называемые цифрами, удовлетворяющие неравенству .

Каждая степень в такой записи называется весовым коэффициентом разряда. Старшинство разрядов и соответствующих им цифр определяется значением показателя (номером разряда). Обычно, в ненулевых числах , левые нули опускаются.

Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число записывают в виде последовательности его -ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:

Например, число сто три представляется в десятичной системе счисления в виде:

Значения первых 16 целых чисел в различных СС

10

2

8

16

10

2

8

16

0

0

0

0

8

1000

10

8

1

1

1

1

9

1001

11

9

2

10

2

2

10

1010

12

А

3

11

3

3

11

1011

13

B

4

100

4

4

12

1100

14

C

5

101

5

5

13

1101

15

D

6

110

6

6

14

1110

16

E

7

111

7

7

15

1111

17

F

Наиболее употребляемыми в настоящее время позиционными системами являются:

1 — единичная (счёт на пальцах, зарубки, узелки «на память» и др.);

2 — двоичная (в дискретной математике, информатике, программировании);

В двоичной системе счисления для записи чисел используется две цифры 0 и 1. Основание системы q=2 записывается как 102=[1*21+0*20]10 В данной СС любое число может быть представлено последовательностью двоичных цифр. Эта запись соответствует сумме степеней цифры 2, взятых с указанными в ней коэффициентами

X=am*2m+am-1*2m-1+…+a1*21+a0*20+… . Например, двоичное число (10101101)2=1*27+0*26+1*25+0*24+1*23+1*22+0*21+1*20=17310

Правила двоичной арифметики:

Сложение: 0+0=0;

1+0=1;

0+1=1;

1+1=10 (происходит перенос единицы в старший разряд);

Вычитание: 0-0=0;

1-1=0;

1-0=1;

10-1=1 (происходит заем единицы в старшем разряде);

Умножение: 0х0=0;

1х0=0;

0х1=0;

1х1=1;

3 — троичная;

8 — восьмеричная;

10 — десятичная (используется повсеместно);

12 — двенадцатеричная (счёт дюжинами);

13 — тринадцатеричная;

16 — шестнадцатеричная (используется в программировании, информатике);

60 — шестидесятеричная (единицы измерения времени, измерение углов и, в частности, координат, долготы и широты).

В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.

Правила перевода из одной позиционной системы счисления в другую

Перевод целых чисел

Допустим, число Х из системы счисления с основанием q требуется перевести в систему счисления с основанием р. Перевод осуществляется по следующему правилу. Целую часть числа делим на новое основание р. Полученный от деления первый остаток является младшей цифрой целой части числа с основанием р. Целую часть полученного числа снова делим на основание р. В результате определим второй остаток, равный следующей после младшей цифре числа с основанием р', деление будем производить до тех пор, пока не получим частное меньше делителя. Последнее частное дает старшую цифру числа с основанием р.

Пример 1:

Число 137,458 перевести в двоичную систему счисления. Перевод осуществляется заменой каждой восьмеричной цифры трехзначным двоичным числом (триадой):

1

3

7,

4

5

001

011

111,

100

101

т,е 137,458 = 001011111,1001012.

И наоборот, заменой каждой триады слева и справа от запятой эквивалентным значением восьмеричной цифры образуется восьмеричное число. Если в крайней слева или крайней справа триаде окажется меньше трех двоичных чисел, то эти тройки дополняют нулями.

Пример 2:

Число 5F,9416 перевести в двоичную систему счисления. Перевод осуществляется заменой каждой шестнадцатеричной цифры четырехзначным двоичным числом (тетрадой):

5

F,

9

4

0101

1111

1001,

0100

т.e. 5F,9416=01011111,100101002.Исходя из Число 5F,9416 в восьмеричной системе счисления имеет вид 137,458.

В десятичной двоично-кодированной системе счисления, часто называемой двоично-десятичной системой, используются десятичные числа. В ней каждую цифру деся-тичного числа (от 0 до 9) заменяют тетрадой.

Пример 3:

Число 273,5910 перевести в двоично-десятичную систему счисления. Перевод осуществим следующим образом:

2

7

3,

5

9

0010

0111

0011

0101

1001

т.е. 273,5910 = 001001110011,010110012-10

Двоично-десятичную запись числа используют непосредственно или как промежу-точную форму записи между обычной десятичной его записью и машинной двоичной. Вычислительная машина сама по специальной программе переводит двоично-десятичные числа в двоичные и обратно.

Пример 4

Число 2610 перевести в двоичную систему счисления. Перевод осуществим методом последовательного деления десятичного числа 26 на основание новой системы счисления - 2. Остатки от деления образуют искомое число в двоичной СС. Таким образом:

В результате получаем 2610 = 110102

Пример 5

Число 19110 перевести в восьмеричную систему счисления. Перевод осуществим методом последовательного деления десятичного числа 191 на основание новой системы счисления - 8. Остатки от деления образуют искомое число в восьмеричной СС.Остатки отделения образуют восьмеричное число

В результате получаем 19110 = 2772

Перевод из позиционной СС в десятичную:

Перевод из любой позиционной системы счисления в десятичную осуществляется следующим методом:

1) над каждым разрядом числа расставляют его номер по порядку справа налево, начиная с нуля; 2) цифры числа являются коэффициентами при основании системы счисления в степенях соответствующих номеру разряда; 3) суммируют полученные произведения оснований системы счисления в степенях равных соответствующему номеру разрядов на цифры числа.

Рассмотрим данный алгоритм на примере перевода 11010012 в десятичную СС: 11010012 = [1*26+1*25+0*24+1*23+0*22+0*21+1*20]10 = 10510

Перевод дробных чисел

Предположим, что правильную дробь X, представленную в системе счисления с основанием q, требуется перевести в систему счисления с основанием р. Перевод осуществляем по следующему правилу. Исходное число умножаем на новое основание р. Получающаяся при этом целая часть произведения является первой искомой цифрой. Дробную часть произведения снова умножаем на основание р, целая часть нового произведения будет второй искомой цифрой. Дробную часть снова умножаем на основание р и т. д.

в результате 0,3110 = 0,01001112

Из этого примера следует, что перевод дробей может представлять собой бесконечный процесс, а результат перевода — приближенный.

Число цифр в числе, представленном в системе счисления с основанием р, определяется из условия, что точность числа в этой системе должна соответствовать точности числа в системе счисления с основанием q.

Перевод двоичной части числа рассмотрим на примере перевода двоичной дроби в десятичную, его можно осуществить сложением всех цифр со степенями 2, соответствующими позициям разрядов исходной двоичной дроби, в которых цифры равны 1. Т.е. осуществляется аналогично переводу целых чисел, но цифры нумеруются слева на право со знаком минус.

Пример 6:

0,11101112 = [1*2-1+1*2-2+1*2-3+1*2-5+1*2-6+1*2-7]10 = 0,9296875

Перевод произвольных чисел.

Числа, имеющие целую и дробную часть, переводятся в два этапа: вначале целая часть числа, а затем дробная.

Смешанные системы счисления

Смешанная система счисления является обобщением -ричной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел , и каждое число в ней представляется как линейная комбинация:

, где на коэффициенты , называемые как и прежде цифрами, накладываются некоторые ограничения.

Записью числа в смешанной системе счисления называется перечисление его цифр в порядке уменьшения индекса , начиная с первого ненулевого.

В зависимости от вида как функции от смешанные системы счисления могут быть степенными, показательными и т. п. Когда для некоторого , смешанная система счисления совпадает с показательной -ричной системой счисления.

Наиболее известным примером смешанной системы счисления является представление времени в виде количества суток, часов, минут и секунд. При этом величина « дней, часов, минут, секунд» соответствует значению секунд.

Факториальная система счисления

В факториальной системе счисления основаниями являются последовательность факториалов , и каждое натуральное число представляется в виде:

, где .

Факториальная система счисления используется при декодировании перестановок списками инверсий: имея номер перестановки, можно воспроизвести её саму следующим образом: число, на единицу меньшее номера (нумерация начинается с нуля) записывается в факториальной системе счисления, при этом коэффициент при числе i! будет обозначать число инверсий для элемента i+1 в том множестве, в котором производятся перестановки (число элементов меньших i+1, но стоящих правее его в искомой перестановке)

Пример: рассмотрим множество перестановок из 5 элементов, всего их 5! = 120 (от перестановки с номером 0 — (1,2,3,4,5) до перестановки с номером 119 — (5,4,3,2,1)), найдём 101-ую перестановку: 100 = 4!*4 + 3!*0 + 2!*2 + 1!*0 = 96 + 4; положим ti — коэффициент при числе i!, тогда t4 = 4, t3 = 0, t2 = 2, t1 = 0 , тогда: число элементов меньших 5, но стоящих правее равно 4; число элементов меньших 4, но стоящих правее равно 0; число элементов меньших 3, но стоящих правее равно 2; число элементов меньших 2, но стоящих правее равно 0 (последний элемент в перестановке «ставится» на единственное оставшееся место) — таким образом, 101-я перестановка будет иметь вид: (5,3,1,2,4) Проверка данного метода может быть осуществлена путём непосредственного подсчёта инверсий для каждого элемента перестановки.

Фибоначчиева система счисления

Фибоначчиева система счисления основывается на числах Фибоначчи. Каждое натуральное число в ней представляется в виде:

, где  — числа Фибоначчи, , при этом в коэффициентах есть конечное количество единиц и не встречаются две единицы подряд.

Соседние файлы в папке Информатика