Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Укрощение ядра.pdf
Скачиваний:
861
Добавлен:
26.08.2013
Размер:
5.92 Mб
Скачать

разработка конструкций зарядов и ЯБП, способных выдерживать определенный уровень нагрузок, возникающих при действии поражающих факторов ядерного взрыва (ПФЯВ) средств ПРО;

разработка термоядерных зарядов высокой удельной мощности для оснащения РГЧ ра-

кетных комплексов РВСН и ВМФ.

Некоторые предпосылки решения этих задач ранее уже были экспериментально проверены. Использование новых взрывчатых веществ с высокими удельными характеристиками способ-

ствовало упрочнению конструкции зарядов и снижению их веса.

В середине 60-х годов во ВНИИЭФ был разработан эффективный способ повышения удельной мощности термоядерных зарядов. Удельная мощность была увеличена практически в два раза по сравнению с зарядами, испытанными в 1961–1962 годах.

Этот способ повышения энерговыделения термоядерного узла нашел отражение в проектах нового поколения зарядов, предназначенных для оснащения, главным образом, стратегических ракет РВСН и ВМФ.

Во второй половине 60-х годов проводились исследования, связанные с выработкой концептуальных подходов к проектированию зарядов повышенной стойкости к средствам ПРО. С этой целью исследуется воздействие поражающих факторов ядерного взрыва на конструкцию заряда и ЯБП в целом. Расчеты и проектные проработки показали, что в принципе можно создать сверхпрочную боеголовку, способную выдержать воздействие мощного комплекса поражающих факторов ядерного взрыва на достаточно близких расстояниях от подрыва противоракеты, однако это потребует больших затрат веса.

Учитывая предполагаемый уровень технических характеристик средств перехвата будущей противоракетной обороны США, исследовались и рассматривались в проектных разработках конструкции как сверхпрочных, так и упрочненных к поражающим факторам ПРО боеголовок и соответственно зарядов при умеренных затратах веса.

С 1967 года развертываются полномасштабные работы по созданию термоядерных зарядов нового (третьего) поколения. В это время еще сохраняется порядок автономной разработки зарядов по весовым категориям, то есть фактически создаются унифицированные конструкции зарядов, которые одновременно могли бы быть использованы в носителях с различной полезной нагрузкой и различного назначения. Вместе с тем «весовой ряд» претерпевает заметное смещение в область меньших значений масс зарядов.

Для лабораторно-конструкторской отработки зарядов третьего поколения значительно совершенствуется экспериментальная база институтов. Создаются новые установки, в том числе для лабораторных исследований живучести зарядов и ЯБП к действию проникающих излучений, воздействию инерционных, динамических, температурных и климатических нагрузок. Кроме того, на полигонах проводятся натурные облучательные опыты по изучению воздействия излучений на конструкцию зарядов и приборы автоматики подрыва. Эти меры способствовали созданию зарядов и ЯБП с ними, отвечающих предъявленным к ним МО тактико-техническим и эксплуатационным требованиям.

2.5. Разделяющиеся головные части стратегических ракет

Впервые разделяющиеся головные части (РГЧ) стратегических ракет появились в США: в первой половине 60-х годов появились кассетные РГЧ, а через несколько лет РГЧ ИН.

Увеличение количества боевых элементов на борту ракеты кардинально изменяло боевые и тактико-технические возможности стратегических вооружений и резко повышало общее число боеголовок в РВСН и ВМФ.

РГЧ, как разновидность боевого оснащения ракеты, в отличие от моноблочной ГЧ, существенно усиливала боевой потенциал ракеты, благодаря способности поражать несколько выборочных целей, а также ее тактические возможности по преодолению атакующих средств противоракетной обороны (ПРО).

Работы по данному направлению были развернуты в полном объеме уже со второй половины 60-х годов.

146

Укрощениеядра

 

 

При этом схема функционального построения РГЧ в своем развитии прошла два этапа, принципиально отличающихся друг от друга: вначале были разработаны РГЧ без индивидуального наведения каждого ББ на цель (так называемые РГЧ рассеивающегося или кассетного типа), а позднее с независимым индивидуальным наведением (РГЧ ИН), то есть по аналогии с эволюцией РГЧ в США.

Воснове конструкции РГЧ кассетного типа, по сравнению с моноблочной ГЧ, лежал следующий принцип. На платформу РГЧ последней ступени ракеты устанавливалось несколько боевых блоков, закрывающихся общим аэродинамическим обтекателем, который сбрасывался в конце активного участка полета ракеты. Затем платформа по команде системы управления ракеты отделялась и двигалась по баллистической траектории. Над целью специальным устройством ББ разделялись и далее летели по своим траекториям.

Распределение полезной нагрузки ракеты с РГЧ на несколько боевых элементов, естественно, снижало массу боевых блоков и их мощность.

Вто же время боевая эффективность нескольких менее мощных зарядов в РГЧ была более высокой по поражающему действию по сравнению с зарядом моноблочной ГЧ.

С другой стороны, в условиях противодействия ПРО для поражения всех ББ РГЧ требуется как минимум число противоракет, равное числу боевых блоков в РГЧ, то есть эффективность противоракетной обороны заметно падает из-за количественного роста необходимых средств перехвата. Таковы в общих чертах характеристики принципиальных особенностей кассетных РГЧ.

В1967 году на вооружение Советской Армии была передана тяжелая жидкостная межконтинентальная ракета РС-20 с моноблочной ГЧ, которая была разработана в КБ «Южное» и изготовлялась на Южном машиностроительном заводе в Днепропетровске.

Вноябре этого же года в КБ «Южное» были начаты проектные работы по РГЧ кассетного (рассеивающегося) типа для оснащения этой ракеты. Для данной РГЧ был выбран испытанный до 1963 года мощный термоядерный заряд разработки ВНИИЭФ.

Летно-конструкторские испытания ракеты РС-20 с РГЧ начались уже в августе 1968 года. Постановлением Правительства от 26 октября 1970 года МБР РС-20 с первой советской РГЧ кассетного типа была принята на вооружение.

По сравнению с РГЧ кассетного типа, разделяющиеся головные части с индивидуальным наведением (РГЧ ИН), безусловно, кардинально повышали боевую эффективность МБР как за счет избирательного поражения целей, расположенных на большом расстоянии друг от друга, так и за счет тактических возможностей построения боевых порядков сложной баллистической цели РГЧ ИН в условиях противодействия ПРО.

Результатом реализации программ по РГЧ ИН был быстрый прогресс в совершенствовании технологии во всех областях, связанных со стратегическим ракетно-ядерным оружием.

Всередине 60-х годов военно-промышленная комиссия СССР приняла решение о проведении

ворганизациях МОМ и МО поисковых работ, связанных с боевым оснащением тяжелой двухступенчатой жидкостной МБР второго поколения – РС-20 разработки КБ «Южное», в том числе и разделяющимися головными частями индивидуального наведения.

Большой «забрасываемый» вес этой ракеты открывал широкие возможности выбора оптимального состава РГЧ ИН.

Были рассмотрены проекты различного состава боевого оснащения: от РГЧ ИН с несколькими ББ большой мощности до РГЧ ИН с большим количеством термоядерных зарядов.

Заряды третьего поколения разрабатывались, прежде всего, в интересах боевого оснащения стратегических ракет, в том числе с разделяющимися головными частями. Они явились основой боевого оснащения ядерных вооружений РВСН и стратегических РК ВМФ с моноблочными ракетами.

Вчастности, эти заряды нашли применение:

в МБР: РС-10, РС-12, РС-14, РС-16, РС-18, РС-20 различных модификаций;

в БРПЛ: РСМ-25 (во второй и третьей модификациях), РСМ-45, РСМ-50.

Вместе с тем заряды третьего поколения применялись в качестве боевого оснащения и в других видах ЯО: оперативно-тактических ракетах сухопутных войск; крылатых ракетах стратегического назначения, оружии противолодочной обороны с базированием на подводных лодках и надводных кораблях и торпедах ВМФ.

Вэтот период начали развиваться негативные явления в процессе разработки и развертывания ядерных вооружений в Советском Союзе, – создание неоправданно большого количества типов носителей и, соответственно, из-за многообразия требований к боевому оснащению, расширение номенклатуры ядерных боеприпасов.

Воснове расширения количества типов систем ЯО лежало исторически сложившееся стремление к постоянному совершенствованию оружия. Однако этот процесс развивался в условиях:

отсутствия надлежащего концептуального этапа разработки комплексов ЯО, на котором определяется технический облик оружия. Часто системы ЯО разрабатывались в ответ на появление аналогов в США;

недостаточного, в ряде случаев, объема предпроектных исследований комплексов оружия;

отсутствия должной координации в процессе разработки ЯО, главным образом, на

уровне комплекса и т.д.

Что касается иных видов ВС и родов войск, то здесь, в дополнение к указанным причинам, росту номенклатуры ЯБП способствовало также желание заказчика оснастить ядерными зарядами комплексы вооружения, которые разрабатывались, главным образом, для ведения боевых действий в обычных военных операциях, то есть с использованием бризантных ВВ. При наличии в эксплуатации и разработке большого количества типов обычных боеприпасов (торпеды, снаряды, КР и т.п.) для выполнения широкого круга узких оперативных задач появился дополнительный арсенал таких же ядерных боеприпасов.

Появление комплексов вооружения однотипного назначения также было результатом мощной поддержки КБ-разработчиков различными влиятельными группировками в руководстве военнопромышленного комплекса СССР (что на практике нередко приводило к ситуации: сколько КБразработчиков, столько и типов систем оружия).

В 80-х годах были предприняты попытки упорядочить номенклатуру ЯО (с помощью более глубокой концептуальной проработки комплексов оружия, улучшения координации разработок, составления комплексных целевых программ и т.п.). Но это уже стало происходить накануне заключения договоров с США об ограничении и сокращении ядерных вооружений.

Во второй половине 70-х годов после реализации программ разработки МБР и БРПЛ, в том числе с РГЧ ИН, Советский Союз приблизился по числу стратегических наступательных вооружений и боеголовок к стратегическому ядерному потенциалу США.

18 июня 1979 года в Вене был подписан Договор ОСВ-2, который предусматривал ограничения на все компоненты стратегических наступательных вооружений. Общее число стратегических носителей ограничивалось уровнем в 2400 единиц, а с 1 января 1981 года – уровнем в 2250 единиц. При этом число МБР и БРПЛ с РГЧ ИН ограничивалось уровнем в 1200 единиц, в том числе МБР с РГЧ ИН – уровнем в 820 единиц.

Во второй половине 70-х годов США приступили к полномасштабной разработке нового поколения МБР (МХ) и БРПЛ (система Trident), исследовательские и проектные работы по которым были начаты еще в семидесятые годы.

Концептуальная основа этих проектов – «противосиловое давление» – ставила цель перед МБР МХ и БРПЛ Trident – поражение высокопрочных объектов типа шахтных пусковых установок МБР, пунктов системы боевого управления. Это была новая попытка в ходе «холодной войны» достичь превосходства в ядерных вооружениях за счет качественного совершенствования ракетно-ядерной технологии. Со стороны Советского Союза были незамедлительно приняты ответные адекватные меры.

Оборонные отрасли, в том числе и оба ядерных центра, включались в разработку новых высокоэффективных термоядерных зарядов и соответственно ББ для боевого оснащения новых перспективных:

МБР РТ-23УТТХ (РС-22) и

БРПЛ Р-39 (РСМ-52).

6 августа 1975 года вышло Постановление Правительства, которым МСМ, МОМ и МО поручалось выполнить НИР и поисковые работы по обеспечению в перспективных РК ВМФ существенного повышения точности прицеливания с учетом ошибок в определении места и курса ПЛ и ис-

148

Укрощениеядра

 

 

пользования новых принципов управления ракет, а также по созданию малогабаритного ББ с соответствующими тактико-техническими характеристиками.

Всоответствии с данным постановлением было поручено провести необходимые проработки

иподготовить предложения по созданию термоядерного заряда для перспективного малогабаритного ББ для оснащения РГЧ ИН БРПЛ типа РСМ-52.

Проектные параметры БГ W76 для системы Trident по материалам открытых публикаций позволяли ориентировочно оценить предполагаемую удельную мощность БГ, которая была заметно выше удельной мощности аналогичного отечественного ББ, находившегося в то время на вооружении БРПЛ.

Рубеж, который предстояло преодолеть разработчикам по повышению характеристик ББ для морских баллистических ракет, был чрезвычайно высоким.

Предстояло решить задачу: создать высокоскоростной боевой блок с совершенными аэробаллистическими характеристиками конической формы и термоядерный заряд высокой удельной мощности.

Впервые, спустя двадцать лет после создания первой ГЧ для межконтинентальной ракеты, была осуществлена совместная разработка проекта ББ, оптимизированы габаритно-массовые характеристики заряда, автоматики боевого оснащения в целом и боевой ступени ракеты – РГЧ, взаимоувязаны аэробаллистические характеристики ББ, его масса, габариты, центровка, с соответствующими параметрами предполагаемого, еще не прошедшего полигонные испытания заряда и системы автоматики подрыва.

Параллельно во ВНИИЭФ и ВНИИТФ приступили к разработке термоядерных зарядов и системы автоматики подрыва в условиях ограничений, определенных параметрами корпуса ББ.

Врамках реализации данной задачи во ВНИИЭФ были разработаны проекты нескольких вариантов малогабаритного первичного атомного заряда.

Всего при реализации проекта создания малогабаритного заряда для БРПЛ РСМ-52 в период 1976–1983 годов ВНИИЭФ было проведено 33 полигонных испытания. Значительное количество полигонных испытаний явилось следствием большого числа разрабатываемых вариантов зарядов, и отчасти было связано с неудачами при испытаниях. Сказывалась также недостаточная мощность вычислительного центра в сравнении с объемом ведущихся работ.

Врамках разработки ББ для БРПЛ РСМ-52 предпринимались меры по миниатюризации систем автоматики подрыва. На этом пути были достигнуты высокие результаты: массогабаритные параметры системы автоматики подрыва, по сравнению с предыдущими поколениями, радикально улучшились.

Врезультате широкомасштабных работ во ВНИИТФ был создан термоядерный заряд с требуемыми параметрами. Боевой блок, разработка которого завершилась в 1985 году с этим зарядом, имел характеристики значительно выше, чем его предшественник, и отвечал необходимым тактикотехническим требованиям.

В1987 году этот боевой блок поступил на перевооружение ракетного комплекса с БРПЛ РСМ-52.

23 июня 1976 года Постановлением Правительства КБ «Южное» и Южному машиностроительному заводу было поручено создание новой трехступенчатой твердотопливной МБР РС-22 с основными техническими характеристиками, близкими к характеристикам МБР США MX, в том числе и по боевому оснащению. Предусматривалось, что ракета РС-22 будет иметь железнодорожное и шахтное базирование.

Разработка заряда для боевого оснащения РГЧ ИН МБР РС-22 отличалась сложным и противоречивым, порой конфликтным характером, связанным с трудностями работ по ракете в КБЮ, создававшему в первую в своей истории МБР на твердом топливе и с жесткими требованиями заказчика.

Всоответствии с директивными документами ВПК и МО, обязывающих МСМ осуществить разработку боевого оснащения для ракеты РС-22, во ВНИИЭФ был разработан первый в этих целях термоядерный заряд, который успешно был испытан в 1979 году.

Вянваре 1982 года на совместном совещании научно-технического руководства КБ «Южное»

иВНИИЭФ было принято решение об улучшении компоновочных параметров заряда для ракеты РС-22 и снижении массы ББ за счет комплексной оптимизации заряда, корпуса ББ и уменьшения веса автоматики при обеспечении требуемого ограничения по миделю блока.

Соседние файлы в предмете Атомная энергетика