Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Укрощение ядра.pdf
Скачиваний:
866
Добавлен:
26.08.2013
Размер:
5.92 Mб
Скачать

6. ТЕХНИЧЕСКОЕ ПРИМЕНЕНИЕ ПОДЗЕМНЫХ ЯДЕРНЫХ ВЗРЫВОВ

6.1. Глубинное сейсмическое зондирование земной коры

Перспективным направлением изучения глубинного строения земной коры стало глубинное сейсмозондирование с использованием ядерных взрывов в качестве сейсмоисточника. Метод был основан на использовании мощного сейсмосигнала, отраженного от соответствующих пластов земной коры. Дальность регистрации сигнала от ядерного взрыва достигает 700 км, в то время как от обычного взрыва с химическим ВВ она составляет всего лишь 20 км. Принципиально новый метод геофизических исследований был предназначен для выявления перспективных регионов, содержащих нефть, газ и другие полезные ископаемые. С 1965 года в Министерстве геологии и МСМ были начаты опытно-методические исследования с целью разработки методики регистрации сейсмических волн, возбуждаемых подземными ядерными взрывами. При проведении мирных ядерных взрывов на газовых месторождениях Урта-Булак, Памук, Тахта-Кугульта, «Совхозное» и на Осинском нефтяном месторождении проводилась регистрация сейсмических сигналов на различных удаленьях от места взрыва.

В результате исследований 1966–1970 годов был решен ряд методических вопросов, были получены сведения о глубинном строении некоторых районов, завершено аппаратурное оформление технологии, а также решены различные организационные вопросы.

Созданная методика позволила за сравнительно короткие сроки провести региональные рекогносцировочные работы, на выполнение которых по обычной методике глубинного сейсмического зондирования понадобились бы многие годы и гораздо более значительные затраты труда.

При осуществлении технологии сейсмозондирования заряд (источник упругих колебаний) помещали в специально пробуренную скважину, глубиной от 500 до 1000 м, а сейсмические регистрирующие приборы, включаемые по радиосигналу, расставляли по профилю с помощью вертолетов. Протяженность профилей зондирования изменялась от 1500 до 4000 км, число взрывов на профиле составляло от 3 до 5 при расстоянии между ними от 500 до 900 км.

Основные технологические и методические требования к технологии ГСЗ предполагали:

необходимость производства взрыва в строго заданное время, поскольку запуск станций для регистрации осуществлялся автономно по радиосигналу, а время работы сейсмостанций было ограничено;

соблюдение заданной мощности взрыва, что было необходимо для интерпретации полученных результатов;

соблюдение радиационной безопасности.

Радиационная безопасность обеспечивалась правильным выбором геолого-гидрологических условий проведения взрыва, глубиной и энергией взрыва, оптимальной конструкцией скважины и тщательным проведением изоляционных работ в процессе ее бурения. Отрицательные последствия сейсмического эффекта практически отсутствовали, так как работы проводились в малонаселенных районах, и размещение точек взрыва можно было достаточно широко варьировать, располагая их вдали от населенных пунктов.

Существенным преимуществом технологии глубинного сейсмозондирования, по сравнению с обычным методом, наряду с меньшей стоимостью, являлась возможность изучения строения огромных по протяженности профилей в короткое время.

В рамках комплексной программы Министерства геологии СССР и АН СССР по изучению геологического строения земной коры в период с 1971 по 1988 год было проведено 39 подземных ядерных взрывов на 14 профилях ГСЗ, суммарной протяженностью 70000 км. Кроме того, было исследовано два профиля ГСЗ при попутном использовании ПЯВ, проведенных для других целей.

Применение ГСЗ подтвердило наличие значительных количеств газовых и газоконденсатных месторождений, что определило большой экономический эффект применения ЯВ в этих целях.

6.2. Экскавационные ядерные взрывы

Программа мирного использования ядерных взрывов предусматривала создание с помощью ядерных взрывов широкой сети искусственных водоемов в засушливых районах юга страны. Необходимость этих работ была связана с проблемой снабжения водой ряда районов Семипалатинской, Кустанайской, Целиноградской, Павлодарской и Гурьевской областей. Многие сельскохозяйственные угодья этих областей находились в долинах рек, которые характеризуются непостоянным стоком.

Подземные ядерные взрывы на выброс по сравнению с камуфлетными взрывами было значительно сложнее осуществлять из-за трудностей в обеспечении радиационной безопасности. Исследование вопросов применения ядерных взрывов на выброс показало техническую возможность и экономическую целесообразность их проведения для создания различных водоемов (по оценкам и проектным проработкам конца 60-х годов, только для засушливых районов Казахстана требовалось создать до 40 водоемов общим объемом до 120–140 миллионов кубических метров), плотин для нужд энергетики и орошения, каналов для переброски части стока крупных северных рек на юг в целях восстановления уровня и предотвращения засоления таких важных внутренних водоемов, как Каспийское, Аральское и Азовское моря.

Изучение показало, что для аккумуляции весенних стоков в долинах рек можно создать емкости в виде глубоких воронок, способных принимать до 3–5 миллионов кубических метров воды при незначительном зеркале испарения. Задержанная с помощью воронок вода могла использоваться в хозяйственных целях в нужное время года.

С учетом особенностей применения ядерных взрывов, в первую очередь, было начато проектирование взрыва с выбросом грунта на реке Чаган в Семипалатинской области. Основным элементом водоема являлась глубокая воронка, располагаемая в пойме реки, которая создавалась с помощью ядерного взрыва на выброс. В образованном взрывом навале затем прокладывался канал, соединявший русло реки с воронкой. Канал строился или взрывами химических ВВ одновременно с ядерным взрывом, или после него обычными средствами строительной техники.

Взрыв в скважине 1004 в пойме реки Чаган был проведен 15 января 1965 года. Специально разработанный во ВНИИЭФ термоядерный заряд с энерговыделением 140 кт был взорван на глубине 178 м. К концу первых суток после взрыва мощность дозы гамма-излучения в воронке и на навале грунта составила 20–30 Р/ч. В районе предполагаемого канала и дамбы уровни радиации около 1 Р/ч наблюдались через 10 суток после взрыва (на расстоянии 400–500 м от его эпицентра). Примерно через месяц была выполнена разбивка трассы канала и были измерены уровни радиации на различных расстояниях от эпицентра взрыва. В эпицентральной зоне взрыва основной вклад в дозу гамма-излучения вносили радионуклиды наведенной активности.

Распределение мощностей доз излучения по мере удаления от эпицентра взрыва и закономерность их изменения во времени подсказывали простейшее инженерное решение – начинать работы по созданию канала в местах с более низкими уровнями излучения и относить на более поздний срок работу на участках, где уровни излучения были высокими. Кроме того, было установлено, что по мере снятия верхних слоев грунта с помощью бульдозеров содержание радионуклидов уменьшалось и при этом снижалась мощность дозы γ-излучения.

В результате взрыва образовалась воронка со следующими параметрами: диаметр воронки по начальной поверхности – 430 м; высота гребня навала 20–35 м; ширина навала от гребня воронки – 400 м; объем видимой воронки составил от гребня навала 10,3 миллиона кубических метров, от начальной поверхности – 6,4 миллиона кубических метров. В зоне навала грунта выпало 30–40% радионуклидов, образовавшихся при взрыве. Породы навала перекрыли реку, образовав взрывонабросную плотину. Для пропуска талых вод весной 1965 года русло реки соединили с воронкой каналом. В последующем, 1966 году, в левобережной части навала была построена каменно-земляная плотина с водопропускными сооружениями. Сооружение канала, плотины и водосбросов создало условия для образования водоема общей емкостью около 17 миллионов кубических метров, в том числе в воронке – 6,4 миллионов кубических метров. Внешний водоем использовался для разведения рыб и водопоя скота.

На объекте была установлена санитарно-защитная зона; радиационная обстановка периодически контролировалась службой радиационной безопасности полигона.

Взрыв на реке Чаган не был оптимальным для экскавационных ядерных взрывов, показатель выброса – отношение радиуса воронки к глубине заложения заряда – составил больше единицы; следствием был повышенный выход продуктов взрыва в атмосферу, небольшие выпадения радиоактивности были обнаружены и за пределами полигона.

Впериод с 1989 по 1991 год методами авиационной и наземной гамма-спектрометрии проводилось обследование зоны радиоактивного загрязнения вокруг озера Чаган. Было определено, что воронка характеризуется величиной мощности дозы около 1 мР/час. След от взрыва прослеживается в северо-западном направлении и фиксировался на удалении до 5–6 км от эпицентра с уровнем мощности дозы 15–25 мкР/час.

В1968 году начались работы по отработке экскавационной технологии для прокладки каналов. 21 октября 1968 года на Семипалатинском полигоне был проведен промышленный взрыв

«Телькем», целью которого было изучение экскавационного действия ядерного взрыва в целях прокладки канала. Для проведения взрыва был выбран ранее разработанный во ВНИИТФ заряд небольшой мощности. При уровне энерговыделения 0,24 кт и глубине заложения 31 м был произведен взрыв на выброс с образованием воронки диаметром 70–80 м и глубиной 20 м. 12 ноября 1968 года в этих же целях был проведен второй промышленный взрыв «Телькем-2» с одновременным подрывом трех ядерных зарядов, аналогичных использованному в опыте «Телькем». Заряды располагались вдоль одной линии с расстоянием между скважинами около 40 м. В результате взрыва образовалась выемка в виде траншеи длиной 140 м шириной 60–70 м и глубиной 16 м.

Взрыв «Телькем-2» проводился на Семипалатинском полигоне в 1968 году, как модельный, для получения параметров заложения группового взрыва из трех зарядов на трассе проектируемого канала Печора-Колва на севере Пермской области.

По механическому и сейсмическому действию модельные взрывы подтвердили расчетные параметры, и их результаты были использованы для проектирования группового экскавационного взрыва.

Опытно-промышленные работы по созданию траншейной выемки в условиях заболоченной местности проводились в Пермской области на трассе будущего Печоро-Колвинского канала. Необходимость строительства такого канала в то время разделялась многими учеными и обуславливалась значительным понижением уровня Каспийского моря (с 1935 по 1970 год – на 2,5 м).

Три ядерных заряда, с энерговыделением 15 кт каждый, были размещены в трех скважинах на глубине 127 м. Расстояние между скважинами составило 163–167 метров. Одновременный взрыв зарядов на объекте «Тайга» был осуществлен 23 марта 1971 года. В результате взрыва образовалась траншейная выемка длиной 700 м, шириной 340 м и глубиной от 10 до 15 м с устойчивыми бортами, с углом откоса 8–10 градусов. Окружающий траншею навал пород был образован за счет подъема и деформации поверхности земли и частично за счет выброшенного грунта.

Мощность дозы гамма-излучения на гребне навала, спустя 15 лет после взрыва, колебалась от 60 до 600 мкР/ч, над поверхностью водоема – до 50 мкР/ч. На объекте соблюдается режим санитар- но-защитной зоны. За пределами санитарно-защитной зоны радиационная обстановка сохраняется на уровне естественного фона, объект периодически контролируется.

Как показали исследования, экскавационные ядерные взрывы были экономически оправданными, когда мощность одиночного заряда превышала 10 кт. При этом, однако, нельзя было гарантировать соблюдение Московского договора 1963 года, и дальнейшие работы по этой технологии были прекращены.

Выход радиоактивных продуктов подземного ядерного заряда наружного действия в атмосферу можно значительно снизить, если не допускать раскрытия «купола» во время взрыва. Этого можно достигнуть двумя путями.

Первый путь – заложение заряда на склоне горы в каньоне, когда, в результате разрыхления взрывом, порода скатывается по склону и образует набросную плотину, или же на ровной поверхности при помощи ядерного взрыва на вспучивание, когда нераскрывшийся купол горных пород после падения образует навал пород выше начальной поверхности, за счет разрыхления горных пород.

В этих целях 7 декабря 1974 года был проведен взрыв «Лазурит» в урочище Муржик Семипалатинского полигона на склоне крутизной 20 градусов. Заряд с энерговыделением 1,7 кт был взо-

рван в скважине на глубине 75 м, в результате взрыва на склоне образовался куполообразный навал раздробленной породы высотой 14 м и диаметром 200 м. Уровни радиации в момент и после взрыва были на 3–4 порядка ниже, чем при взрывах на выброс.

Взрыв «Кристалл» был проведен 2 октября 1974 года в Мирнинском районе Республики Саха (Якутия) с целью создания плотины хвостохранилища обогатительной фабрики. Заряд с энерговыделением 1,7 кт был взорван в скважине на глубине 98 м. Через 3,5 секунды после взрыва подъем пород достиг максимальной высоты 60 м, с последующим оседанием без раскрытия купола. В результате взрыва на поверхности образовался навал, который представлял собой куполообразное возвышение диаметром 180 м и средней высотой 10 м. Проведенная в 1991 году гамма-бета-съемка вспученных пород и прилегающих территорий показала наличие на объекте естественного радиационного фона (9–15 мкР/ч). Только на одном ограниченном участке мощность экспозиционной дозы достигала 50–60 мкР/ч. После засыпки этого участка навала породами из карьера толщиной до 6 м уровни снизились до фоновых значений. Объект находится под периодическим наблюдением.

Второй путь – получение провальных воронок, для чего взрывы должны быть проведены на определенной приведенной глубине в слабых осадочных породах. Необходимых геологических условий для проведения таких взрывов на территории Семипалатинского полигона не было. Наиболее подходящие геологические условия для получения провальных воронок были на полуострове Мангышлак, где в 1969–1970 годах было проведено три взрыва. Провальная воронка при взрыве в скважине 2-Т имела глубину 13,8 м и радиус 150 м, а при взрыве в скважине 6-Т – глубину 12,8 м и радиус 250 м.

В1990 году контрольные наблюдения в местах подземных ядерных взрывов на полуострове Мангышлак в скважинах 1-Т, 2-Т, 6-Т показали, что уровни радиации на дне воронок находятся на уровне естественного фона.

Врамках программы Plowshare в США также проводилась серия экскавационных экспериментов. Первый эксперимент этого типа Danny Boy был проведен 5 марта 1962 года. Заряд мощностью 0,43 кт был заложен на глубине 33 м. В результате взрыва образовалась воронка диаметром 65 метров и глубиной 21 м.

Второй эксперимент Sedan проводился 6 июля 1962 года. Энерговыделение заряда составляло 104 кт, а глубина заложения была 194 м. В результате взрыва был образован кратер диаметром 365

ми глубиной 97 м. Кроме того, в двух экспериментах 1968 года продолжалось исследование параметров образования кратеров, выхода радиоактивных продуктов и сейсмического воздействия. 26 января 1968 года был проведен опыт Cabriolet с энерговыделением в 2,3 кт и глубиной заложения в 52 м. Диаметр воронки составил 110 м, а ее глубина была 36 м. В декабре 1968 года было проведено испытание Schooner с энерговыделением в 30 кт и глубиной заложения 107 м. В результате взрыва образовалась воронка диаметром 260 м и глубиной 73 м.

Применительно к отработке технологии протяженных экскавационных взрывов 12 марта 1968 года в США был проведен мирный ядерный эксперимент Buggy, который представлял собой одновременный подрыв цепочки из 5 ядерных зарядов с энерговыделением в 1,1 кг каждый и глубиной заложения в 41 м. В результате взрыва образовалась траншея длиной 262 м, шириной 85 м и глубиной в 21 м. Легко обнаружить аналогию между экспериментами «Телькем-2» и Buggy.

Впрограмме Plowshare США значительное место занимали проекты по созданию искусственных гаваней. Эти идеи восходят к результатам наземных испытаний мощных термоядерных зарядов Mike и Bravo на атоллах Эниветак и Бикини, в результате которых в коралловом грунте образовались огромные выемки диаметром около 2 км. Как отмечалось, одним из первых проектов Plowshare был проект создания искусственной гавани на побережье Аляски. Для его реализации предполагалось проведение одновременного взрыва четырех зарядов с энерговыделением в 20 кт и пятого заряда с энерговыделением в 200 кт.

Вкачестве международного проекта рассматривался вопрос о возможности создания искусственной гавани на северо-западном побережье Австралии. В одном из вариантов в этих целях предусматривалось размещение цепочки из пяти зарядов с энерговыделением в 200 кт каждый на расстоянии около 300 м друг от друга и на глубине в 240 метров под морским дном. Одновременный взрыв должен был создать гавань длиной около 2 км, шириной в 400–500 м и глубиной в центре

Соседние файлы в предмете Атомная энергетика