Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Укрощение ядра.pdf
Скачиваний:
861
Добавлен:
26.08.2013
Размер:
5.92 Mб
Скачать

ядерной энергетики в производстве электроэнергии в Словакии составляет 53%. Общая электроэнерговыработка реакторов ВВЭР составила 237 ТВт час.

С 1983 по 1987 год на территории Венгрии были построены четыре энергоблока АЭС «Пакш» с реакторами ВВЭР-440. Все они действуют в настоящее время и производят около 40% выработки электроэнергии Венгрии. Общая электроэнерговыработка этих реакторов составила 228 ТВт час.

В 1977–1981 годах были сданы в эксплуатацию два реактора ВВЭР-440 АЭС «Ловииса» в Финляндии. Они также действуют до настоящего времени, и их электроэнерговыработка составила 164 ТВт час. Следует отметить, что в Финляндии действуют также два реактора BWR с электрической мощностью 840 МВт, входящие в состав АЭС «Олкилуото». Хотя на долю ядерной энергетики Финляндии приходится 32% от общего объема производства электроэнергии, реакторы ВВЭР-440 вырабатывают из них 35%.

Первым опытом разработки ядерного реактора для зарубежной АЭС было создание реактора ВВЭР-2 для АЭС «Райнсберг» в ГДР. Этот реактор имел электрическую мощность в 70 МВт и был введен в эксплуатацию в 1966 году. В период с 1974 по 1989 год в ГДР было введено в действие пять энергоблоков АЭС «Грейфсвальд» на основе реакторов ВВЭР-440. Все они были остановлены

вначале 1990 года после объединения Германии. Общая электроэнерговыработка реакторов ВВЭР

вГДР составила 142 ТВт час.

Внастоящее время ведутся работы по созданию энергоблоков АЭС на основе реакторов ВВЭР в КНР, Индии, Иране.

Разработано и начато сооружение энергоблоков ВВЭР третьего поколения, представляющих собой пример эволюционного развития. В этих проектах в большей мере развиты черты внутренней безопасности, включающие использование естественных факторов и процессов и пассивных технических средств.

Масштабы энергосистемы европейской части России и требование конкурентоспособности с электростанциями на органическом топливе (в том числе и на газе) обосновывают тенденцию увеличения мощности энергоблоков. Периодически делались концептуальные проектные проработки реакторных установок для энергоблоков ВВЭР электрической мощностью от 1300 до 2000 МВт. Уже в 1983 году рассматривались практические предложения по блоку 1500 МВт. В настоящее время разработана концепция энергоблока ВВЭР-1500, учитывающая особенности сегодняшнего дня, опирающаяся на возможности российской машиностроительной базы, и максимальным образом использующая опыт реализации ВВЭР-1000 и разработки энергоблоков третьего поколения. Возможно, что такой блок может стать одним из базовых энергоблоков ядерной энергетики России последующего десятилетия.

3. РЕАКТОРЫ НА БЫСТРЫХ НЕЙТРОНАХ

Количество урана в разведанных относительно богатых месторождениях оценивается примерно в 5–6 миллионов тонн, в потенциальных месторождениях – более 10 миллионов тонн. При доминирующей сегодня практике расходования урана в тепловых реакторах эти ресурсы могут быть исчерпаны до конца XXI века.

Физики быстро поняли этот недостаток реакторов на тепловых нейтронах, выросших из проблемы производства ядерного оружия. Энрико Ферми, который в 1942 году запустил первый в мире ядерный реактор, предложил построить для мирной ядерной энергетики принципиально новое устройство – реактор на быстрых нейтронах (БН). Его отличие от теплового реактора состоит в том, что в нем происходит расширенное воспроизводство горючего, то есть он потребляет ядерного топлива меньше, чем производит. Эффективность использования урана в атомной энергетике возрастет при этом в сотню раз.

Вместе с реактором на быстрых нейтронах должно работать производство по переработке отработанного (облученного) ядерного топлива, в том числе по выделению из ОЯТ плутония для его

повторного использования. В этом и состоит основное преимущество: полученный плутоний можно смешать с ураном и использовать в виде MOX-топлива на АЭС. Получается эффективный и экономичный замкнутый ядерный цикл. Плутоний атомных станций с БН представляет серьезную угрозу режиму нераспространения ядерных материалов. Это обусловлено как высоким изотопным качеством нарабатываемого здесь плутония, так и требуемой масштабной переработкой ОЯТ и выделением плутония в больших количествах. Существенно также, что МОХ-топливо этих реакторов содержит плутоний в значительных количествах, и само может быть материалом для создания взрывных устройств. Для соблюдения режима нераспространения при масштабном развитии такой технологии требуются технологические и организационные барьеры, а также соответствующие политические договоренности.

Первый опытный реактор на быстрых нейтронах (ЕВR-1) появился в США в 1951 году. Работы по созданию реактора на быстрых нейтронах начались в СССР в 1950 году. Создание

экспериментальной базы для его разработки сопровождалось исследованиями по выбору теплоносителей для таких реакторов. В качестве теплоносителей рассматривались различные материалы: гелий, натрий, натрий-калий, ртуть, свинец, свинец-висмут.

Вконце 1949 года А.И. Лейпунский предложил развернуть в Лаборатории «В» работы по исследованию возможностей реакторов на быстрых нейтронах. В 1952 году была начата разработка первого реактора этого типа БР-2 с ртутным теплоносителем и активной зоной на основе металлического плутония. Для отработки технологии создавалась также модель этого реактора БР-1. В 1955 году был создан БР-1, а в 1956 году – реактор БР-2 мощностью в 150 кВт. Эксперименты на БР-1 и БР-2 подтвердили возможность расширенного воспроизводства делящихся материалов в реакторах на быстрых нейтронах. Теплоноситель из ртути оказался неудачным, реактор БР-2 был демонтирован и вместо него в 1958 году был введен в действие реактор БР-5 с проектной мощностью в 5 МВт

инатриевым теплоносителем. Создание этого реактора имело важное значение для получения необходимого опыта работ с реакторами, использующими натриевый теплоноситель.

По инициативе А.И. Лейпунского, было начато создание существенно более мощного реактора на быстрых нейтронах БОР-60. В качестве места сооружения этого реактора был выбран незадолго до этого созданный новый ядерный центр – НИИ атомных реакторов. Вместе с этим НИИ был построен и новый город – Димитровград (Ульяновская область). Реактор БОР-60 был принят в эксплуатацию в конце 1968 года. Этот реактор использовался для испытаний ТВЭЛов с различными видами топлива, материалов-поглотителей нейтронов, конструкционных материалов реакторов. Испытания ТВС на реакторе БОР-60 были важны для дальнейших работ по созданию реакторов на быстрых нейтронов, в частности, БН-600, что, собственно, и являлось первоначальной задачей его создания. Обоснование схемы реактора было выполнено ФЭИ.

В1960 году были начаты работы по созданию первого опытно-промышленного реактора на быстрых нейтронах БН-350. Разработка принципиальных элементов схемы реактора проводилась ФЭИ, конструкторские работы проводились в ОКБМ, а проектные работы – во ВНИПИЭТ. Энергетический пуск реактора состоялся в 1973 году. В качестве места для размещения реактора был выбран город Шевченко Казахской ССР. В настоящее время реактор закрыт.

В1963 году были начаты работы по созданию промышленного энергетического реактора на быстрых нейтронах БН-600. В качестве места для его размещения была выбрана площадка Белоярской АЭС. Этот реактор был выведен на проектный уровень мощности в конце 1981 года. Он успешно действует и в настоящее время, обеспечивая электроэнергией район Урала. Следует отметить, что реактор БН-600 использует для своей работы не МОХ-топливо, а урановое топливо с достаточно высоким содержанием U-235 (около 20%).

Накопленный опыт создания и эксплуатации реакторов БН-350 и БН-600 содействовал развитию дальнейшего проектирования реакторов на быстрых нейтронах. Эти усилия были направлены, с одной стороны, на модернизацию реактора БН-600 в целях создания серийной реакторной установки, а с другой стороны, на создание реактора на быстрых нейтронах существенно большей мощности. Эти работы привели к разработке проекта энергоблока БН-800, который предполагается построить на Белоярской АЭС, а с другой стороны, к исследованиям по проекту реактора БН-1600.

Сформировавшиеся в начале 60-х годов представления об ожидаемых темпах роста ядерной энергетики, способах обеспечения ее топливом и необходимых для этого показателях воспроизвод-

Соседние файлы в предмете Атомная энергетика