Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Intern (1) / 24.doc
Скачиваний:
127
Добавлен:
01.06.2015
Размер:
129.02 Кб
Скачать

Билет 24

1.Антидоты

Под антидотами (противоядиями) подразумевают такие лечебные препараты, которые при введении в организм в условиях интоксикации способны обезвредить (инактивировать) яд, циркулирующий в кровеносном русле или даже связавшиеся с каким-либо биологическим субстратом либо устранить токсический эффект яда, а также ускорить его выведение из организма. К антидотам также относят такие вещества, которые способны препятствовать проникновению яда в организм.

  • Этиотропные антидоты:

А. Химический антагонизм

- нейтрализация токсиканта

Б. Биохимический антагонизм

- вытеснение токсиканта из связи с биосубстратом;

- другие пути компенсации, нарушенного токсикантом количества и качества биосубстрата

В, Физиологический антагонизм

- нормализация функционального состояния субклеточных биосистем (синапсов, митохондрий, ядра клетки и др.)

Г. Модификация метаболизма токсиканта

  • Патогенетические:

- модуляция активности процессов нервной и гуморальной регуляции;

- устранение гипоксии; предотвращение пагубных последствий нарушений биоэнергетики;

- нормализация водно-электролитного обмена и кислотно-основного состояния;

- нормализация проницаемости гисто-гематических барьеров;

- прерывание патохимических каскадов, приводящих к гибели клеток и др.

  • Симптоматические

- устранение боли судорог психомоторного возбуждения

- нормализация дыхания

- нормализация гемодинамики и др.

Краткая характеристика механизмов антидотного действия

Обычно выделяют следующие механизмы антагонистических отношений двух химических веществ:

1. Химический;

2. Биохимический;

3. Физиологический;

4. Основанный на модификации процессов метаболизма ксенобиотика.

Антидоты с химическим антагонизмом непосредственно связываются с токсикантами. При этом осуществляется нейтрализация свободно циркулирующего яда.

Биохимические антагонисты вытесняют токсикант из его связи с биомолекулами-мишенями и восстанавливают нормальное течение биохимических процессов в организме.

Физиологические антидоты, как правило, нормализуют проведение нервных импульсов в синапсах, подвергшихся атаке токсикантов.

Модификаторы метаболизма препятствуют превращению ксенобиотика в высокотоксичные метаболиты, либо, ускоряют биодетоксикацию вещества.

В настоящее время антидоты с химическим антагонизмом широко используют в практике оказания помощи отравленным.

Прямое химическое взаимодействие :Антидоты этой группы непосредственно связываются с токсикантами. При этом возможны:

- химическая нейтрализация свободно циркулирующего токсиканта;

- образование малотоксичного комплекса;

- высвобождение структуры-рецептора из связи с токсикантом;

- ускоренное выведение токсиканта из организма за счет его "вымывания" из депо.

К числу таких антидотов относятся глюконат кальция, используемый при отравлениях фторидами, хелатирующие агенты, применяемые при интоксикациях тяжелыми металлами, а также Со-ЭДТА и гидроксикобаламин - антидоты цианидов. К числу средств рассматриваемой группы относятся также моноклональные антитела, связывающие сердечные гликозиды (дигоксин), ФОС (зоман), токсины (ботулотоксин).

Хелатирующие агенты - комплексообразователи : К этим средствам относится большая группа веществ, мобилизующих и ускоряющих элиминацию из организма металлов, путем образования с ними водорастворимых малотоксичных комплексов, легко выделяющихся через почки

По химическому строению комплексообразователи классифицируются на следующие группы:

1. Производные полиаминполикарбоновых кислот (ЭДТА, пентацид и т.д.);

2. Дитиолы (БАЛ, унитиол, 2,3-димеркаптосукцинат);

3. Монотиолы (d-пенициламин, N-ацетилпенициламин);

4. Разные (десфериоксамин, прусская синь и т.д.).

Производные полиаминполикарбоновых кислот активно связывают свинец, цинк, кадмий, никель, хром, медь, марганец, кобальт. Дитиольные комплексообразователи используются для выведения из организма мышьяка, ртути, сурьмы, кобальта, цинка, хрома, никеля

Монотиольные соединения образуют менее прочные комплексы с металлами, чем дитиольные, но в отличии от последних всасываются в желудочно-кишечном тракте и потому могут назначаться через рот. Десфериоксамин избирательно связывает железо, а прусская синь (ферроцианат калия) - таллий.

Антитела к токсикантам. Для большинства токсикантов эффективные и хорошо переносимые антидоты не найдены. В этой связи возникла идея создания универсального подхода к проблеме разработки антидотов, связывающих ксенобиотики, на основе получения антител к ним. Теоретически такой подход может быть использован при интоксикациях любым токсикантом, на основе которого может быть синтезирован комплексный антиген (см. раздел "Иммунотоксичность"). =

Опосредованная химическая нейтрализация:Некоторые вещества не вступают в химическое взаимодействие с токсикантом при введении в организм, но существенно расширяют ареал "немых" рецепторов для яда. К числу таких противоядий относятся метгемоглобинообразователи - антидоты цианидов и сульфидов, в частности: азотистокислый натрий, амилнитрит, 4-метиламинофенол, 4-этиламинофенол (антициан) и др. Как и прочие метгемоглобинообразователи, эти вещества окисляют двухвалентное железо гемоглобина до трехвалентного состояния.

Как известно, основным механизмом токсического действия цианидов и сульфидов, попавших в кровь, является проникновение в ткани и взаимодействие с трехвалентным железом цитохромоксидазы, которая утрачивает при этом свою физиологическую активность (см. раздел "Механизм действия"). С железом, находящимся в двухвалентном состоянии (гемоглобин), эти токсиканты не реагируют. Если отравленному быстро ввести в необходимом количестве метгемоглобинообразователь, то образующийся метгемоглобин (железо трехвалентно) будет вступать в химическое взаимодействие с ядами, связывая их и препятствуя поступлению в ткани. Более того концентрация свободных токсикантов в плазме крови понизится и возникнут условия для разрушения обратимой связи сульфид- и/или циан-иона с цитохромоксидазой (рисунок 4).

Биохимический антагонизм: Токсический процесс развивается в результате взаимодействия токсиканта с молекулами (или молекулярными комплексами) - мишенями. Это взаимодействие приводит к нарушению свойств молекул и утрате ими специфической физиологической активности. Химические вещества, разрушающие связь "мишень-токсикант" и восстанавливающие тем самым физиологическую активность биологически значимых молекул (молекулярных комплексов) или препятствующие образованию подобной связи, могут использоваться в качестве антидотов. Данный вид антагонизма лежит в основе антидотной активности кислорода при отравлении оксидом углерода, реактиваторов холинэстеразы и обратимых ингибиторов холинэстеразы при отравлениях ФОС, пиридоксальфосфата при отравлениях гидразином и его производными.

Кислород используют при интоксикациях различными веществами, однако специфическим противоядием он является для оксида углерода. Оксид углерода (угарный газ) имеет высокое сродство к двухвалентному железу гемоглобина, с которым образует прочный, хотя и обратимый комплекс - карбоксигемоглобин. Карбоксигемоглобин не способен осуществлять кислородтранспортные функции. Кислород конкурирует с оксидом углерода за связь с гемоглобином и при высоком парциальном давлении вытесняет его.

В качестве противоядий используют те или иные вещества или смеси, в зависимости от характера яда (токсина):

этанол может быть использован при отравлении метиловым спиртом

атропин — используют при отравлении M-холиномиметиками (мускарин и ингибиторами ацетилхолинэстеразы (фосфорорганические яды).

глюкоза — вспомогательный антидот при многих видах отравлений, вводится внутривенно или перорально. Способна связывать синильную кислоту. Нейтрализует действие цианистого калия, образуя в соединении с ним нетоксичное соединение — циангидрид глюкозы.

налоксон — используют при отравлении и передозировке опиоидами

Антидоты, наиболее часто используемые при острых отравлениях

Унитиол — низкомолекулярный донатор SH-групп, универсальный антидот. Обладает широким терапевтическим действием, малотоксичен. Применяется как антидот при острых отравлениях люизитом, солями тяжелых металлов (ртуть, медь, свинец), при передозировке сердечных гликозидов, отравлении хлорированными углеводородами.

ЭДТА-тетацин-кальций, Купренил — относится к комплексонам (хелатообразователям). Образует легко растворимые низкомолекулярные комплексы с металлами, которые быстро выводятся из организма через почки. Применяется при острых отравлениях тяжелыми металлами (свинец, медь).

Оксимы (аллоксим, дипироксим) — реактиваторы холинэстераз. Используются при отравлениях антихолинэстеразными ядами, такими как ФОВ. Наиболее эффективны в первые 24 часа.

Атропина сульфат — антагонист ацетилхолина. Применяется при острых отравлениях ФОВ, когда в избытке накапливается ацетилхолин. При передозировке пилокарпина, прозерина, гликозидов, клофелина, бета-блокаторов; а также при отравлении ядами, вызывающими брадикардию и бронхорею.

Этиловый спирт — антидот при отравлении метиловым спиртом, этиленгликолем.

Витамин В6 — антидот при отравлении противотуберкулезными препаратами (изониазид, фтивазид); гидразином.

Ацетилцистеин — антидот при отравлении дихлорэтаном. Ускоряет дехлорирование дихлорэтана, обезвреживает его токсичные метаболиты. Применяется также при отравлении парацетамолом.

Налорфин — антидот при отравлении морфином, омнопоном, бенздиазепинами.

Цитохром-С — эффективен при отравлении окисью углерода.

Липоевая кислота — применяется при отравлении бледной поганкой как антидот аманитина.

Протаминсульфат — антагонист гепарина.

Аскорбиновая кислота — антидот при отравлении перманганатом калия. Используется для детоксикационной неспецифической терапии при всех видах отравлений.

Тиосульфат натрия — антидот при отравлении солями тяжелых металлов и цианидами.

Противозмеиная сыворотка — используется при укусах змей.

ронический лимфолейкоз (ХЛЛ) — опухолевое заболевание, возникающее вследствие мутаций в геноме В-лимфоцита. Основная функция В-лимфоцитов — обеспечение гуморального иммунитета. Конечная стадия развития В-лимфоцита в организме — иммуноглобулинсекретирующая плазматическая клетка. В-лимфоциты при ХЛЛ вследствие изменений в клеточном геноме не развиваются до плазматических клеток. Это ведет к резкому уменьшению в организме больного выработки иммуноглобулинов, к которым относятся все антитела.

2.Хронический лимфолейкоз

Хронический лимфолейкоз, или хронический лимфоцитарный лейкоз (ХЛЛ) — злокачественное клональное лимфопролиферативное заболевание, характеризующееся накоплением атипичных зрелых CD5/CD19/CD23-положительных В-лимфоцитов преимущественно в крови, костном мозге, лимфатических узлах, печени и селезёнке.

Этиопатогенез:Первоначально ХЛЛ рассматривали как онкологическое заболевание, характеризующееся накоплением долгоживущих, но очень редко делящихся иммунологически некомпетентных B-лимфоцитов. Однако исследования с использованием тяжёлой воды показали, что злокачественные клетки пролиферируют, и достаточно быстро — количество новых клеток, образующихся за день, составляет от 0,1 до более чем 1 % от общего числа клеток клона. Причём при высокой скорости пролиферации более вероятно агрессивное течение болезни.

Клеточное микроокружение (ниша) играет большую роль в патогенезе хронического лимфолейкоза. Пролиферация злокачественных клеток происходит в микроанатомических структурах, которые называются пролиферативными центрами, или псевдофолликулами. Псевдофолликулы представляют собой скопления лейкозных клеток, находящихся в контакте со вспомогательными клетками (например, стромальными клетками), которые стимулируют их пролиферацию и выживание.

Возможные причины[править]

Происхождение злокачественного клона: Злокачественные клетки имеют CD19/CD5/CD23-положительный иммунофенотип и низкий уровень мембранных иммуноглобулинов. Нормальные популяции В-клеток с таким набором поверхностных маркеров неизвестны, что мешает установить, какой тип клеток может давать начало злокачественному клону при ХЛЛ. Анализ транскриптома показал, что опухолевые клетки по набору синтезируемых мРНК похожи на зрелые В-клетки, которые прошли активацию антигеном. В норме таким профилем экспрессии генов обладают В-клетки памяти и В-клетки краевой зоны лимфатических фолликулов, поэтому предполагают, что именно они могут быть предшественниками лейкозных клеток.

Клинические проявления: Характерен абсолютный лимфоцитоз в периферической крови (по данным гемограммы) и костном мозге (по данным миелограммы). На ранних стадиях лимфоцитоз является единственным проявлением заболевания. Пациенты могут предъявлять жалобы на так называемые «конституциональные симптомы» — астению, повышенную потливость, спонтанное снижение массы тела.Характерна генерализованная лимфаденопатия. Увеличение внутригрудных и внутрибрюшных лимфатических узлов выявляется при ультразвуковом или рентгенологическом обследовании, периферические лимфоузлы доступны пальпации. Лимфатические узлы могут достигать значительных размеров, образовывать мягкие или плотноватые конгломераты. Сдавление внутренних органов не характерно.

На более поздних стадиях заболевания присоединяется гепатомегалия и спленомегалия. Увеличение селезёнки может проявляться ощущением тяжести или дискомфорта в левом подреберье, феноменом раннего насыщения.

За счёт накопления опухолевых клеток в костном мозге и вытеснения нормального гемопоэза на поздних стадиях могут развиваться анемия, тромбоцитопения, редко нейтропения. Поэтому пациенты могут жаловаться на общую слабость, головокружения, петехии, экхимозы, спонтанную кровоточивость.

Анемия и тромбоцитопения также могут иметь аутоиммунный генез.

Для заболевания характерна выраженная иммуносупрессия, затрагивающая преимущественно гуморальный иммунитет (гипогаммаглобулинемия). Из-за этого имеется предрасположенность к инфекциям, например, рецидивирующим простудным заболеваниям.

Необычным клиническим проявлением заболевания может быть гиперреактивность на укусы насекомых.

Диагностика:Для дифференциальной диагностики ХЛЛ с другими лимфопролиферативными заболеваниями необходимо проанализировать количество В-клеток в периферической крови, мазок крови и провести иммунофенотипирование циркулирующих в крови лимфоцитов. Дополнительно для определения прогноза (но не схемы лечения) иногда проводят цитогенетическое исследование, определяют мутационный статус локуса IgVH, количество ZAP-70 или CD38 в клетках ХЛЛ, количество CD23, тимидинкиназы и β2-микроглобулина в сыворотке крови, а также анализируют биоптат или аспират костного мозга[7].

Анализ крови:Необходимым критерием диагноза ХЛЛ является повышение абсолютного числа В-лимфоцитов в крови до или более 5×109/л в течение не менее чем трёх месяцев. Клональное происхождение лимфоцитов подтверждают с помощью иммунофенотипирования.В мазке крови обнаруживаются опухолевые клетки, которые имеют морфологию зрелых (малых) лимфоцитов: «штампованное» ядро с конденсированным хроматином без ядрышка, узкий ободок цитоплазмы. Иногда отмечается существенная (более 10 %) примесь омоложенных клеток (пролимфоцитов и параиммунобластов), требующая проведения дифференциального диагноза с пролимфоцитарным лейкозом.

Иммунофенотипирование:Иммунофенотипирование лимфоцитов методом проточной цитометрии обязательно для подтверждения диагноза. В качестве диагностического материала обычно используется периферическая кровь. Для клеток ХЛЛ характерен аберрантный иммунофенотип: одновременная экспрессия (коэкспрессия) Т-клеточного маркера CD5 и В-клеточных маркеров CD19 и CD23. Количество В-клеточных маркеров CD20, CD79b и мембраносвязанных иммуноглобулинов IgM и IgD понижено по сравнению с нормальными В-клетками. В дополнение к этому выявляется клональность. Диагноз ХЛЛ также может быть установлен на основании данных иммуногистохимического исследования биоптата лимфатического узла или селезёнки.

Цитогенетическое исследование: Цитогенетическое исследование проводится методом стандартного кариотипирования или FISH. Задача исследования — выявление хромосомных мутаций, часть из которых имеет прогностическую значимость. Из-за возможности клональной эволюции исследование должно повторяться перед каждой линией терапии и в случае возникновения рефрактерности. Кариотипирование при ХЛЛ требует применения митогенов, поскольку без стимуляции редко удается получить необходимое для анализа количество метафаз. Интерфазная FISH при ХЛЛ не требует применения митогенов и отличается большей чувствительностью. При анализе используются локус-специфичные зонды, позволяющие выявлять наиболее распространённые хромосомные перестройки.

Хромосомные мутации обнаруживаются более чем в 80 % случаев ХЛЛ. Постепенно накапливающиеся данные позволяют предсказывать прогноз (и даже в некоторых случаях выбирать подходящие схемы лечения) для наиболее часто встречающихся мутаций:

del13q14 выявляется в ~60 % случаев, прогноз благоприятный;

трисомия по хромосоме 12 выявляется в ~15 % случаев, прогноз обычный;

del11q выявляется в ~10 % случаев и может ассоциироваться с резистентностью к алкилирующим химиопрепаратам;

del17p13 выявляется в ~7 % случаев, прогноз неблагоприятный, клоны часто бывают устойчивы к стандартным схемам химиотерапии с использованием алкилирующих препаратов и/или аналогов пурина;

del6q21 характеризуется неблагоприятным прогнозом

Другие методы:Рутинный физикальный осмотр позволяет получить достаточное представление о клинической динамике, поскольку заболевание носит системный характер. Выполнение УЗИ и компьютерной томографии для оценки объёма внутренних лимфоузлов не является обязательным вне клинических исследований.

Хронический лимфолейкоз является неизлечимым, однако медленнопрогрессирующим (индолентным) заболеванием.

Лечение не начинается сразу после подтверждения диагноза. Заболевание может сохранять стабильность годами, иногда в течение всей жизни больного. Часто наблюдается волнообразное течение с периодами увеличения и уменьшения опухолевого объема. Решение о необходимости начала терапии принимается обычно после периода более или менее длительного наблюдения.

Показания для начала лечения сформулированы в современных рекомендациях. Они отражают картину активной прогрессии заболевания, приводящей к ухудшению медицинского состояния больного и/или качества его жизни.

Из-за системного характера заболевания радиотерапия при ХЛЛ не применяется. Стандартом терапии являются химиотерапевтические режимы с включением нуклеотидных аналогов, алкилирующих препаратов и моноклональных антител.

Один из наиболее эффективных режимов — «FCR» (англ. fludarabine, cyclophosphamide, rituximab). Он позволяет получить полную ремиссию примерно у 85 % больных низкой группы риска. Однако этот режим имеет побочные эффекты, которые не позволяют использовать его для пациентов пожилого возраста. Кроме того, режим малоэффективен для больных группы высокого риска (например, имеющих делецию 17p).Режим FCR: Флударабин 25 мг/м2 в/в или 40 мг/м2 р.о. 1—3 дни, Циклофосфамид 250 мг/м2 в/в 1—3 дни,Ритуксимаб 375 мг/м2 (1 курс) или 500 мг/м2 (2—6 курсы) 1 или 0 день

Соседние файлы в папке Intern (1)