Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
245
Добавлен:
03.10.2013
Размер:
246.78 Кб
Скачать

12 Лекция 7 Катализ

Катализ нашел широкое применение в химической промышленности, в частности, в технологии неорганических веществ. Катализ – возбуждение химических реакций или изменение их скорости под влиянием веществ - катализаторов, многократно вступающих в химическое взаимодействие с участниками реакции и восстанавливающихся после каждого цикла взаимодействия свой химический состав. Существуют вещества, уменьшающие скорость реакции, которые называются ингибиторами или отрицательными катализаторами. Катализаторы не изменяют состояния равновесия в системе, а лишь облегчают его достижение. Катализатор может одновременно ускорять как прямую, так и обратную реакции, но при этом константа равновесия остается постоянной. Иными словами, катализатор не может изменить равновесие термодинамически невыгодных обратимых реакций, у которых равновесие сдвинуто в сторону исходных веществ.

Сущность ускоряющего действия катализаторов состоит в понижении энергии активации Еа химической реакции за счет изменения реакционного пути в присутствии катализатора. Для реакции превращения А в В реакционный путь можно представить следующим образом:

А + К  АК

АК  ВК

ВК  В + К

Как видно из рисунка 1, вторая стадия механизма является лимитирующей, поскольку имеет наибольшую энергию активации Екат, однако существенно более низкую, чем для некаталитического процесса Енекат. Снижение энергии активации происходит за счет компенсации энергии разрыва связей реагирующих молекул энергией образования новых связей с катализатором. Количественной характеристикой снижения энергии активации, а значит и эффективности катализатора может служить величина степени компенсации энергии разрываемых связей Дi :

 = (Дi – Екат)/Дi (1)

Чем ниже энергия активации каталитического процесса, тем выше степень компенсации.

Одновременно со снижением энергии активации во многих случаях происходит снижение порядка реакции. Понижение порядка реакции объясняется тем, что в присутствии катализатора реакции идет через несколько элементарных стадий, порядок которых может быть меньше порядка некаталитических реакций.

Виды катализа

По фазовому состоянию реагентов и катализатора каталитические процессы разделяют на гомогенные и гетерогенные. При гомогенном катализе катализатор и реагирующие вещества находятся в одной фазе (газовой или жидкой), при гетерогенном – в разных. Нередко реагирующая система гетерогенного каталитического процесса складывается из трех фаз в различных сочетаниях, например, реагенты могут быть в газовой и жидкой фазах, а катализатор – в твердой.

В особую группу выделяют ферментативные (биологические) каталитические процессы, распространенные в природе и применяемые в промышленности для производства кормовых белков, органических кислот, спиртов, а также при обезвреживании сточных вод.

По типам реакций катализ делят на окислительно-восстановительный и кислотно-основной. В реакциях, протекающих по окислительно-восстановительному механизму, промежуточное взаимодействие с катализатором сопровождается гомолитическим разрывом двухэлектронных связей в реагирующих веществах и образованием связей с катализатором по месту неспаренных электронов последнего. Типичными катализаторами окислительно-восстановительного взаимодействия являются металлы или оксиды переменной валентности.

Кислотно-основные каталитические реакции протекают в результате промежуточного протолитического взаимодействия реагирующих веществ с катализатором или взаимодействия с участием неподеленной пары электронов (гетеролитический) катализ. Гетеролитический катализ протекает с таким разрывом ковалентной связи, при котором, в отличие от гомолитических реакций, электронная пара, осуществляющая связь, целиком или частично остается у одного из атомов или группы атомов. Каталитическая активность зависит от легкости передачи протона реагенту (кислотный катализ) или отрыва протона от реагента (основной катализ) в первом акте катализа. По кислотно-основному механизму протекают каталитические реакции гидролиза, гидратации и дегидратации, полимеризации, поликонденсации, алкилирования, изомеризации и др. Активными катализаторами являются соединения бора, фтора, кремния, алюминия, серы и других элементов, обладающих кислотными свойствами, или соединений элементов первой и второй групп периодической системы, обладающих основными свойствами. Гидратация этилена по кислотно-основному механизму с участием кислотного катализатора НА осуществляется следующим образом: на первой стадии катализаторор служит донором протона

СН2=СН2 + НА  СН3-СН2+ + А-

вторая стадия – собственно гидратация

СН3-СН2+ + НОН  СН3СН2ОН + Н+

третья стадия – регенерация катализатора

Н+ + А-  НА.

Окислительно-восстановительные и кислотно-основные реакции можно рассматривать по радикальному механизму, согласно которому образующаяся при хемосорбции прочная связь молекула-решетка катализатора способствует диссоциации реагирующих молекул на радикалы. При гетерогенном катализе свободные радикала, мигрируя по поверхности катализатора, образуют нейтральные молекулы продукта, которые десорбируются.

Существует также фотокатализ, когда процесс инициируется под действием света.

Поскольку в неорганической химии наиболее распространен гетерогенный катализ на твердых катализаторах, то на нем остановимся подробнее. Процесс можно разделить на несколько стадий:

1) внешняя диффузия реагирующих веществ из ядра потока к поверхности катализатора, в промышленных аппаратах обычно преобладает турбулентная (конвективная) диффузия над молекуларной;

2) внутренняя диффузия в порах зерна катализатора, в зависимости от размеров пор катализатора и размеров молекул реагентов диффузия может происходить по молекулярному механизму или по механизму Кнудсена (при стесненном движении);

3) активированная (химическая) адсорбция одного или нескольких реагирующих веществ на поверхности катализатора с образованием поверхностного химического соединения;

4) перегруппировка атомов с образованием поверхностного комплекса продукт-катализатор;

5) десорбция продукта катализа и регенерация активного центра катализатора, для ряда катализаторов активной является не вся его поверхность, а отдельные участки – активные центры;

6) диффузия продукта в порах катализатора;

7) диффузия продукта от поверхности зерна катализатора в поток газа.

Общая скорость гетерогенного каталитического процесса определяется скоростями отдельных стадий и лимитируется наиболее медленной из них. Говоря о стадии, лимитирующей процесс, предполагают, что остальные стадии протекают настолько быстро, что в каждой из них практически достигается равновесие. Скорости отдельных стадий определяются параметрами технологического процесса. По механизму процесса в целом, включая собственно каталитическую реакцию и диффузионные стадии переноса вещества, различают процессы, проходящие в кинетической, внешнедиффузионной и внутридиффузионной областях. Скорость процесса в общем случае определяется выражением:

d/d = k c (2)

где c – движущая сила процесса, равная произведению действующих концентраций реагирующих веществ, для процесса, протекающего в газовой фазе движущая сила выражается в парциальных давлениях реагирующих веществ р; k – константа скорости.

В общем случае константа скорости зависит от многих факторов:

k = f (k1, k2, kпоб, …..Dи, Dи/, Dп, ….) (3)

где k1, k2, kпоб - константы скоростей прямой, обратной и побочной реакции; Dи, Dи/, Dп - коэффициенты диффузии исходных веществ и продукта, определяющие значение k во внешне- или внутридиффузионной областях процесса.

В кинетической области k не зависит от коэффициентов диффузии. Общее кинетическое уравнение скорости газового каталитического процесса с учетом влияния на скорость основных параметров технологического режима:

u = kvpPn0 = k0 e-Ea/RT vpPn0 (4)

где v - расход газа, p - движущая сила процесса при Р0,1 МПа (1 ат), P - отношение рабочего давления к атмосферному нормальному, то есть безразмерная величина, 0 - коэффициент пересчета к нормальному давлению и температуре, n - порядок реакции.

Механизм химических стадий определяется природой реагирующих веществ и катализатора. Процесс может лимитироваться хемосорбцией одного из реагентов поверхностью катализатора или десорбцией продуктов реакции. Скорость реакции может контролироваться образованием заряженного активированного комплекса. В этих случаях заряжение поверхности катализатора под действием каких-либо факторов оказывает существенное влияние на протекание реакции. В кинетической области протекают главным образом процессы на малоактивных катализаторах мелкого зернения с крупными порами при турбулентном течении потока реагентов, а также при низких температурах, близких к температурам зажигания катализатора. Для реакций в жидкостях переход в кинетическую область может происходить и с повышением температуры вследствие понижения вязкости жидкости и, следовательно, ускорения диффузии. С повышением температуры уменьшается степень ассоциации, сольватации, гидратации молекул реагентов в растворах, что приводит к росту коэффициентов диффузии и соответственно переходу из диффузионной области в кинетическую. Для реакций, общий порядок которых выше единицы, характерен переход из диффузионной области в кинетическую при значительном понижении концентрации исходных реагентов. Переход процесса из кинетической области во внешнедиффузионную может происходить при снижении скорости потока, повышении концентрации повышении температуры.

Во внешнедиффузионной области протекают прежде всего процессы на высокоактивных катализаторах, обеспечивающих быструю реакцию и достаточный выход продукта за время контакта реагентов с катализаторами, измеряемое долями секунды. Очень быстрая реакция почти полностью протекает на внешней поверхности катализатора. В этом случае нецелесообразно применять пористые зерна с высокоразвитой внутренней поверхностью, а нужно стремиться развить наружную поверхность катализатора. Так, при окислении аммиака на платине последнюю применяют в виде тончайших сеток, содержащих тысячи переплетений платиновой проволоки. Наиболее эффективным средством ускорения процессов, протекающих в области внешней диффузии, является перемешивание реагентов, которое часто достигается увеличением линейной скорости реагентов. Сильная турбулизация потока приводит к переходу процесса из внешнедиффузионной области во внутридиффузионную (при крупнозернистых мелкопористых катализаторах) или же в кинетическую области.

Скорость диффузии u можно рассчитать, используя первый закон Фика, который при постоянстве условий диффузии выражается формулой

(5)

где G - количество вещества, перенесенное за время  в направлении х, перпендикулярном к поверхности зерна катализатора при концентрации с диффундирующего компонента в ядре потока реагентов, S - свободная внешняя поверхность катализатора, dc/dx -градиент концентрации.

Предложено большое число способов и уравнений для определения коэффициентов диффузии веществ в различных средах. Для бинарной смеси веществ А и В по Арнольду

(6)

где Т - температура, К; МА, МВ - молярные массы веществ А и В, г/моль; vА, vВ - молярные объемы веществ; Р - общее давление (0,1 М Па); СА+В - константа Сезерленда.

Константа Сезерленда равна:

СА+В = 1,47(ТА/В/)0,5 (7)

г де ТА/, ТВ/ - температуры кипения компонентов А и В, К.

(8)

Для газов А и В с близкими значениями молярных объемов можно принимать =1, а при значительной разности между ними 1.

Коэффициент диффузии в жидких средах Dж можно определить по формуле

(9)

где  - вязкость растворителя, ПаС; М и v - молярная масса и молярный объем диффундирующего вещества; ха - параметр, учитывающий ассоциацию молекул в растворителе.

Во внутридиффузионной области, то есть когда общая скорость процесса лимитируется диффузией реагентов в порах зерна катализатора, существует несколько путей ускорения процесса. Можно уменьшить размеры зерен катализатора и соответственно путь молекул до середины зерна, это возможно если переходят одновременно от фильтрующего слоя к кипящему. Можно изготовить для неподвижного слоя крупнопористые катализаторы, не уменьшая размеров зерен во избежание роста гидравлического сопротивления, но при этом неизбежно уменьшится внутренняя поверхность и соответственно понизится интенсивность работы катализатора по сравнению с мелкозернистым крупнопористым. Можно применять кольцеобразную контактную массу с небольшой толщиной стенок. Наконец, бидисперсные или полидисперсные катализаторы, в которых крупные поры являются транспортными путями к высокоразвитой поверхности, создаваемой тонкими порами. Во всех случаях стремятся настолько уменьшить глубину проникновения реагентов в поры (и продуктов из пор), чтобы ликвидировать внутридиффузионное торможение и перейти в кинетическую область, когда скорость процесса определяется только скоростью собственно химических актов катализа, то есть адсорбции реагентов активными центрами, образования продуктов и его десорбции. Большая часть промышленных процессов, проходящих в фильтрующем слое, тормозится внутренней диффузией, например крупномасштабные каталитические процессы конверсии метана с водяным паром, конверсии оксида углерода, синтез аммиака и т. д.

Время , необходимое для диффузии компонента в поры катализатора на глубину l, можно определить по формуле Эйнштейна:

 = l2/2Dэ (10)

Эффективный коэффициент диффузии в порах определяют приближенно в зависимости от соотношения размеров пор и длины свободного пробега молекул. В газовых средах при длине свободного пробега молекулы компонента , меньшей эквивалентного диаметра поры d=2r (2r), принимают, что в порах происходит нормальная молекулярная диффузия Dэ=D, которую вычисляют по формуле:

(11)

При стесненном режиме движения, когда 2r, определяют Dэ=Dк по ориентировочной формуле Кнудсена:

( 12)

где r - поперечный радиус поры.

При =2r

( 13)

Диффузия в порах катализатора в жидких средах весьма затруднена вследствие сильного повышения вязкости раствора в узких каналах (аномальная вязкость), поэтому для катализа в жидкостях часто применяют дисперсные катализаторы, то есть мелкие непористые частицы. Во многих каталитических процессах с изменением состава реакционной смеси и других параметров процесса может меняться механизм катализа, а также состав и активность катализатора, поэтому необходимо учитывать возможность изменения характера и скорости процесса даже при относительно небольшом изменении его параметров.

Катализаторы могут неограниченно повышать константу скорости реакции, однако, в отличие от температуры, катализаторы не влияют на скорость диффузии. Поэтому, во многих случаях при значительном повышении скорости реакции общая скорость остается низкой из-за медленного подвода компонентов в зону реакции.