Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Адсорбция

.docx
Скачиваний:
22
Добавлен:
03.06.2015
Размер:
53.06 Кб
Скачать

Предельно высокодисперсные системы (золи) иногда трудно классифицировать по агрегатному состоянию дисперсной фазы.

Мицелла (новолат. micella, уменьшительное от лат. mica -- крошка, крупинка), отдельная частица дисперсной фазы золя, т. е. высокодисперсной коллоидной системы с жидкой дисперсионной средой. М. состоит из ядра кристаллической или аморфной структуры и поверхностного слоя, включающего сольватно связанные (см. Сольватация) молекулы окружающей жидкости. Поверхностный слой М. лиофобного золя (см. Лиофильные и лиофобные коллоиды) образован адсорбированными молекулами или ионами стабилизирующего вещества. В случае лиофобных гидрозолей, стабилизованных электролитами, ядро М. окружено двумя слоями противоположно заряженных ионов, т. н. двойным электрическим слоем. Число положительных и отрицательных зарядов в нём одинаково, и поэтому М. в целом электронейтральна.

Непосредственно у поверхности ядра расположены ионы адсорбционного слоя. В него входят все ионы одного знака и часть ионов другого знака (противоионы). Остальные противоионы образуют диффузный слой; он окружает М. в виде ионного «облака», плотность которого падает по мере удаления от ядра. Диффузный слой препятствует сближению и агрегированию (сцеплению) частиц в процессе броуновского движения.

В лиофильных золях, коллоидных дисперсиях типа гидрозолей мыл, например олеата натрия или лаурилсульфата калия, М. представляет собой ассоциат (объединение) молекул. В каждой такой молекуле длинный углеводородный (гидрофобный) радикал связан с полярной (гидрофильной) группой. При образовании М. несколько десятков или сотен молекул объединяются так, что гидрофобные радикалы образуют ядро (внутреннюю область), а гидрофильные группы -- поверхностный слой М. Если дисперсионной средой является органическая жидкость, ориентация молекул в М. может быть обратной: в ядре сосредоточатся полярные группы, тогда как гидрофобные радикалы будут обращены во внешнюю фазу. Изобразив молекулу мицеллообразующего вещества в виде волнистой линии (гидрофобный радикал) с кружочком на конце (гидрофильная группа), можно представить простейшие структурные типы М. схемами:

Мицеллярные структуры 1 и 2 относятся к гидрофильным золям, а 3 и 4 -- к органофильным. Сферические М. (1 и 3) при разбавлении системы ниже критической концентрации мицеллообразования обратимо распадаются на отдельные молекулы или димеры (подробнее см. Полуколлоидные системы). При более высоких концентрациях сферические М. превращаются в пластинчатые (2 и 4). Последние, взаимодействуя между собой, способны создавать в объёме системы структурную сетку геля (см. Гели, Дисперсная структура).

Наличием М. объясняется моющее действие водных растворов (точнее, коллоидных дисперсий) мыл, а также некоторые явления в биологических системах и при технологических процессах (см. также Солюбилизация).

Практическая работа

Цель: Исследование эффективности различных сорбционных материалов (веществ) разной ценовой категории

Выявить сорбционную активность данных препаратов, используя водный раствор свинца.

Этап 1

Приготовление водных растворов Pb (2+)

По 250 мл с концентрацией 0,05 М; 0,025 М; 0,0125 М; путем разбавления

Определение содержания ионов Pb (2+) методом трилонометрии

Титрование раствора (трилоном Б – [C10H14O8N2Na2*2H2O]) содержащего:

10 мл р-ра Pb (2+)

3 мл ацетатного буфера – [СН3СООН+NаСН3СОО] 5,5 моль/л

Несколько капель ксиленолового оранжевого (индикатор) – [C31H28N2Na4O13S]

=> Раствор должен окраситься в желтый цвет

Этап 2

Исследование влияния концентрации адсорбтива на величину адсорбции

Добавление к 25 мл анализируемых растворов 0,3 г измельченных адсорбентов

Перемешивание р-ра, отстаивание в течение 5 минут

Фильтрование через смоченную фильтровальную бумагу

Данные измерений:

Система 1 («Полисорб»): С = 0,05 М; V тр. = 22 мл;

Система 2 (Акт. Уголь): С = 0,025 М; V тр. = 21,5 мл;

Система 3 («Фильтрум-Сти»): С = 0,0125; V тр. = 14,5 мл;

Система 4 («Неосмектин»): С = 0,025; V тр. = 18,6 мл;

Этап 3

Исследование влияния концентрации адсорбтива на величину адсорбции

Добавление к 25 мл анализируемых растворов 0,6 г измельченных адсорбентов

Перемешивание р-ра, отстаивание в течение 5 минут

Фильтрование через смоченную фильтровальную бумагу

Данные измерений:

Система 1 («Полисорб»): С = 0,05 М; V тр. = 8,5 мл;

Система 2 (Акт. Уголь): С = 0,025 М; V тр. = 11,5 мл;

Система 3 («Фильтрум-Сти»): С = 0,0125 М; V тр. = 12 мл;

Система 4 («Неосмектин»): С = 0,025 М; V тр. = 10,8 мл;

Вывод:

  • Сорбционная активность на водном растворе ионов Свинца (Pb+) наиболее эффективна, с увеличением массы адсорбента

В результате исследования выяснилось, что наибольшей сорбционной способностью обладает препарат «Полисорб

Заключение

Адсорбция из растворов имеет огромное значение для большинства физико-химических процессов, происходящих в растительных и животных организмах. Проникновение веществ в организм через полупроницаемые перегородки обычно начинается с явления адсорбции, происходящего на поверхности раздела.

В технике молекулярная адсорбция из растворов получила очень широкое применение. Т.Е. Ловиц впервые применил адсорбцию еще в 18 веке для очистки древесным углем растворов от различных примесей. В настоящее время обычный способ осветления сахарных сиропов осуществляется обработкой их активным углем. Смазочные масла также очищают с помощью специальных глин, действующих в качестве адсорбента.

Путем адсорбции извлекают малые количества веществ, растворенных в больших объемах жидкости. Этим, например, пользуются в технологии редких металлов.

Очень широко адсорбцию применяют в аналитической химии для разделения трудно разделяемых соединений. На процессах адсорбции основана хроматография.

ЗАКЛЮЧЕНИЕ

Анализ материала данного реферата, позволяет сделать некоторые общие выводы, касающиеся проблемы адсорбции полимеров на твердых поверхностях. Эти выводы базиру­ются на современной теории разбавленных растворов полимеров и конфирмационной статистике полимерных цепей. Учет поведения макромолекул в разбавленных растворах, основанный на статистической термодинамике, позволил в настоящее время установить основные закономерности адсорбции полимеров и ее зависимость от природы полимера, поверхности, молекулярного веса и молекулярновесового распределения полимера, природы растворителя и температуры.

Результаты адсорбционных изменений позволили также сделать ряд существенных заключений о характере связывания полимерных молекул поверхностью адсорбента и их расположения на ней, а сле­довательно, и о структуре адсорбционного слоя. Теоретическое опи­сание адсорбции в рамках конформационной статистики полимеров позволило в определенных пределах предсказать поведение поли­мерной молекулы в условиях адсорбционного взаимодействия с твердой поверхностью. Сложившиеся представления о механизме адсорбционных процессов имеют существенное значение для решения общих проблем поверхностных явлений в полимерах, в которых адсорбция играет доминирующую роль.

Вместе с тем совершенно очевидно, что теория адсорбции и адсор­бционного взаимодействия полимерных молекул с поверхностями твердых тел еще разработана недостаточно для надежного предска­зания адсорбции и объяснения многих экспериментальных фактов. В связи с этим остановимся на некоторых нерешенных проблемах. теории адсорбции. Ее построение должно основываться на уже установленных экспериментальных фактах, которых имеется до­статочно много.

Действительно, в основу статистического рассмотрения кладутся представления о типах решеток, описывающих как раствор поли­мера, так и поверхность адсорбента, причем при выборе их параметров исходят из общих рассуждений, а не из представлений о кон­кретных системах. В зависимости от исходных предпосылок могут быть получены различные результаты. Их сопоставление с экспери­ментальными данными весьма затруднено, так как многие пара­метры, входящие в теоретические уравнения, не поддаются экспери­ментальному определению. Соответственно этому представления о структуре адсорбционного слоя также в известной мере зависят от модели и математических методов расчета.

Между тем вопрос о том, как меняется конформация цепи вбли­зи границы раздела, является центральным при рассмотрении струк­туры адсорбционных слоев и он не может быть решен только путем теоретических расчетов При обсуждении вопроса о конформациях в граничном слое следует иметь в виду, что ее изменения могут быть обусловлены как взаимодействием с поверхностью, сопровож­дающимся изменением энтальпии, так и энтропийным фактором, вследствие которого молекула вблизи границы раздела не может принять такого же числа конформаций, как в объеме.

При любом рассмотрения структуры адсорбционного слоя при полном заполнении поверхности адсорбента необходимо учитывать взаимодействие адсорбированных молекул друг с другом, которое также будет влиять на конформации молекулярных цепей в ад­сорбционном слое. Практически такое рассмотрение до сих пор не проводилось, хотя имеются указания на необходимость его учета.

Существующие представления о структуре адсорбционного слоя приводят еще к одной трудности. Она заключается в том, что адсорб­ционный слой рассматривается как раствор полимера. концентра­ция которого значительно выше концентрации полимера в фазе раствора. Тогда и термодинамическое, и статистическое описание поведения макромолекул должно отличаться от того, какое прини­мается для описания свойств разбавленного раствора. В этом случае нельзя пренебрегать возможностями агрегации макромолекул в ад­сорбционном слое. Введение представлений об агрегации макромолекул в адсорбционном слое, осложненном влиянием поверхности, является необходимым условием дальнейшего развития теории ад­сорбции.

Все трудности и проблемы, возникающие при рассмотрении тео­рии адсорбции, относятся к теории адсор­бции из разбавленных растворов. Переход к более концентрирова­нным системам приводит к дополнительным осложнениям. В этом случае при изменении концентрации раствора происходят измене­ния как конформации макромолекул, так и условии их взаимодей­ствия друг с другом. Возникновение молекулярных агрегатов, ко­торое, как показано во многих работах, начинается уже в разбав­ленных растворах, приводит к тому, что при каждой концентрации раствора мы имеем дело с адсорбируемыми частицами, отличающи­мися друг от друга как по форме, так и по размеру. Соответственно этому изменяются условия контакта молекул и их агрегатов с по­верхностью адсорбента, и следовательно, - структура адсорбцион­ного слоя. Мы полагаем, что дальнейшее развитие теории адсорб­ции невозможно без учета тех изменении в структуре растворов, которые происходят по мере повышения их концентрации.

Для проблемы поверхностных явлении в полимерах, и в частнос­ти для решения вопросов, связанных с адгезией, необходимо также исследование условий адсорбционного взаимодействия полимер­ных молекул с поверхностями в очень концентрированных систе­мах или в отсутствие растворителя.

Из изложенного следует, что в области теории адсорбции име­ется много нерешенных проблем, имеющих существенное значение для правильного понимания механизма процесса. Нельзя, однако, ду­мать, что все нерешенные проблемы адсорбции относятся к облас­ти теории. Развитие теория задерживается еще и потому, что мно­гие вопросы недостаточно исследованы экспериментально. К таким вопросам можно отнести экспериментальное исследование влияния на адсорбцию гибкости полимерной цепи в условиях, когда энер­гия взаимодействия цепи с поверхностью сохраняется постоян­ной. Нет прямых определений энергий адсорбции полимеров на твердых поверхностях, мало исследовано влияние полидисперснос­ти на адсорбцию. В литературе отсутствуют работы по адсорбции блок- и привитых полимеров, которые могли бы дать существенные сведения об условиях адсорбционного взаимодействия, не рас­смотрены проблемы адсорбции кристаллизующихся полимеров, олигомеров и т. п. Отсутствуют прямые экспериментальные данные о структуре адсорбционных слоев. Решение вопросов адсорбции имеет значение не только для теории, но и для практики. Собственно говоря, сама проблема выдвинута потребностями практики

Список литературы :

1)http://ru.wikipedia.org/wiki/%C0%E4%F1%EE%F0%E1%F6%E8%FF

2)Бур Я.Х., Динамический характер адсорбции, пер. с англ., М., 1962

3) http://www.xumuk.ru/encyklopedia/43.html

4) Поверхностное натяжение твердых тел и адсорбция 1976 Автор: Гохштейн А. Я. 

5) http://mirslovarei.com/d/108255/?preview

6)http://mipt.ru/dbmp/student/files/chmoph.1/lections/chem_phys/OXF_6.pdf

7)http://dic.academic.ru/dic.nsf/enc_physics/35/%D0%90%D0%94%D0%A1%D0%9E%D0%A0%D0%91%D0%A6%D0%98%D0%AF

8)Учебно-методическое пособие по Общей Химии Е.Ю.Ермишина, Н.А.Белоконова 2012

9) http://magneticliquid.narod.ru/autority/010.htm

 

Соседние файлы в предмете Медицинская химия