Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
termekh_otvety_2015.docx
Скачиваний:
42
Добавлен:
04.06.2015
Размер:
3.6 Mб
Скачать

Начало формы

Конец формы

1Основные понятия и аксиомы статики

1.1. Основные понятия статики

Статикой называется раздел теоретической механики, в котором излагается общее учение о силах и изучаются условия равновесия тел, находящихся под действием сил. Силой называется физическая величина, являющаяся мерой механического взаимодействия тел. Сила – величина векторная. Она характеризуется величиной (модулем), направлением и точкой приложения. Основной единицей измерения силы является Ньютон [Н]. В статике все тела считаются абсолютно твёрдыми, то есть под действием сил их форма и размеры остаются неизменными. Совокупность сил, приложенных к телу, называется системой сил. Если все силы лежат в одной плоскости, то такая система сил называется плоской. Если силы не лежат в одной плоскости, то они образуют пространственную систему сил. Тело, которое из данного положения может переместиться в любое положение в пространстве, называется свободным телом. Две системы сил называют эквивалентными одна другой, если каждая из них, действуя по отдельности, может сообщить покоящемуся телу одно и то же движение  . Система сил, под действием которой покоящееся тело не изменяет своего состояния покоя, называетсяуравновешенной или эквивалентной нулю –  . Сила, которая одна заменяет действие системы сил на твёрдое тело, называетсяравнодействующей –  . Силы могут бытьсосредоточенные (рис. 1.1, а) и распределенные (рис. 1.1, б). Сила, приложенная к какой-нибудь одной точке тела, называется сосредоточенной. Система распределенных сил характеризуется интенсивностью q, т.е. значением силы, приходящейся на единицу длины нагруженного отрезка. Измеряется интенсивность в Ньютонах, деленных на метры (Н/м).

а

б

Рис. 1.1

Распределенную нагрузку в виде прямоугольника (равномерно распределенная нагрузка) или треугольника заменяют одной силой (равнодействующей), которую прикладывают в центре тяжести площади распределения (рис. 1.1, б). Величина равнодействующей численно равна площади фигуры, образованной распределенной нагрузкой:  .1.2. Аксиомы статики

В основе статики лежат некоторые основные положения (аксиомы), которые являются обобщением многовекового производственного опыта человечества и теоретических исследований.

Аксиома 1. Если на свободное абсолютно твёрдое тело действуют две силы, то тело может находиться в равновесии тогда и только тогда, когда эти силы равны по величине и направлены вдоль одной прямой в противоположные стороны (рис.1.2).

Рис.1.2

Аксиома 2. Действие данной системы сил на абсолютно твёрдое тело не изменится, если к ней прибавить или от неё отнять уравновешенную систему сил. Если  , то.Следствие: действие силы на абсолютно твёрдое тело не изменится, если перенести точку приложения силы вдоль её линии действия в любую другую точку тела. Пусть на тело действует приложенная в точке А сила . Выберем на линии действия этой силы произвольную точкуВ, и приложим к ней уравновешенные силы и, причём,. Так как силыиобразуют уравновешенную систему сил, то согласно второй аксиоме статики их  можно отбросить. В результате на тело будет действовать только одна сила, равная, но приложенная в точкеВ (рис.1.3).

Рис.1.3

Аксиома 3. Две силы, приложенные к твёрдому телу в одной точке, имеют равнодействующую, приложенную в той же точке и изображаемую диагональю параллелограмма, построенного на этих силах как на сторонах. Вектор , равный диагонали параллелограмма, построенного на векторахи, называется геометрической суммой векторови(рис.1.4).

Рис.1.4

Аксиома 4. Закон равенства действия и противодействия. При всяком действии одного тела на другое имеет место такое же по величине, но противоположное по направлению противодействие (рис.1.5).

Рис.1.5

Аксиома 5. Принцип отвердевания. Равновесие изменяемого (деформируемого) тела, находящегося под действи-ем данной системы сил, не нарушится, если тело считать отвердевшим, т.е. абсолютно твёрдым.

3. Виды связей и их реакции

Связями называются любые ограничения, препятствующие перемещению тела в пространстве. Тело, стремясь под действием приложенных сил осуществить переме-щение, которому препятствует связь, будет действовать на нее с некоторой силой, называемой силой давления на связь. По закону о равенстве действия и противодействия, связь будет действовать на тело с такой же по модулю, но противоположно направленной силой. Сила, с которой данная связь действует на тело, препятствуя тем или иным перемещениям, называется силой реакции (реакцией) связи. Одним из основных положений механики является принцип освобождаемости от связей: всякое несвободное тело можно рассматривать как свободное, если отбросить связи и заменить их действие реакциями связей. Реакция связи направлена в сторону, противоположную той, куда связь не дает перемещаться телу. Основные виды связей и их реакции приведены в таблице 1.1.

Виды связей и их реакции

 №

 Наименование связи

 Условное обозначение

 1

Гладкая поверхность (опора) – поверхность (опора), трением о которую данного тела можно пренебречь. При свободном опирании реакция направляется перпендикулярно касательной, проведенной через точкуА контакта тела 1 с опорной поверхностью 2.

 2

Нить (гибкая, нерастяжимая). Связь, осуществлённая в виде нерастяжимой нити, не позволяет телу удаляться от точки подвеса. Поэтому реакция нити направлена вдоль нити к точке её подвеса.

 3

Невесомый стержень –  стержень, весом которого по сравнению с воспринимаемой нагрузкой можно пренебречь. Реакция невесомого шарнирно прикрепленного прямолинейного стержня направлена вдоль оси стержня.

 4

Подвижный шарнир, шарнирно-подвижная опора.  Реакция направлена по нормали к опорной поверхности.

 

 5

Цилиндрический шарнир (подшипник, шарнирно-неподвижная опора). При осуществлении связи в виде цилиндрического шарнира одно тело может поворачиваться относительно другого вокруг общей оси, называемой осью шарнира. Реакция цилиндрического шарнира заранее не известна ни по величине, ни по на-правлению; может иметь любое направление в плоскости, перпендикулярной оси шарнира. Модуль и направление полной реакции определяют две составляющие реакции в этой плоскости.

 6

Сферический (шаровый) шарнир, подпятник. Тела, соединённые с помощью сферического шарнира, могут как угодно поворачиваться относительно центра шарнира. Реакция сферического шарнира может иметь любое направление в пространстве.  Реакция сферического шарнира и подпятника (подшипника с упором) может иметь любое направление в пространстве. Три составляющие,,реакции определяют модуль и направление полной реакции.

 7

Жесткая заделка. В плоскости жесткой заделки будут две составляющие реакции ,и момент пары сил, который препятствует повороту балки1 относительно точки А. Жесткая заделка в пространстве отнимает у тела 1 все шесть степеней свободы – три переме-щения вдоль осей координат и три поворота отно-сительно этих осей. В пространственной жесткой заделке будут три составляющие ,,и три момента пар сил.

 

 8

Ползун 1 на стержне 2. Рекция направлена перпендикулярно стержню2, момент пары сил препятствует повороту ползуна1 относительно точки А.

 9

Ползун 1 в направляющих. Рекция направлена перпендикулярно направляющим, момент пары силпрепятствует повороту ползуна1 относительно точки А.

 

2Вращательное движение вокруг неподвижной оси

       Движение твердого тела, при котором две его точки О и О' остаются неподвижными, называется вращательным движением вокруг неподвижной оси, а неподвижную прямую ОО' называют осью вращения.        Пусть абсолютно твердое тело вращается вокруг неподвижной оси ОО' (рис. 2.12).

Рис. 2.12

       Проследим за некоторой точкой М этого твердого тела. За время  dt  точка М совершает элементарное перемещение  dr.        При том же самом угле поворота  dφ, другая точка, отстоящая от оси на большее или меньшее расстояние, совершает другое перемещение. Следовательно, ни само перемещение некоторой точки твердого тела, ни первая производная , ни вторая производнаяне могут служить характеристикой движения всего твердого тела.        За это же времяdt радиус-вектор , проведенный из точки0' в точку М, повернется на угол  dφ. На такой же угол повернется радиус-вектор любой другой точки (т.к. тело абсолютно твердое, в противном случае расстояние между точками должно измениться).        Угол поворота  dφ  характеризует перемещение всего тела за время dt.        Удобно ввести – вектор элементарного поворота тела, численно равныйdφ  и направленный вдоль оси вращения ОО' так, чтобы, глядя вдоль вектора, мы видели вращение по часовой стрелке (направление вектора и направление вращения связаны «правилом буравчика»).        Элементарные повороты удовлетворяют обычному правилу сложения векторов:

       Угловой скоростью называется вектор , численно равный первой производной от угла поворота по времени и направленный вдоль оси вращения в направлении(ивсегда направлены в одну сторону).

 

.

 (2.4.1)

 

       Если  ω – const, то имеет место равномерное вращение тела вокруг неподвижной оси. Пусть  v  – линейная скорость точки М. За промежуток времени dt точка М проходит путь dr = vdt. В то же время  dr = Rdφ  (dφ - центральный угол). Тогда, можно получить связь линейной скорости и угловой:

 

.

 (2.4.2)

 

       В векторной форме .        Векторортогонален к векторамии направлен в ту же сторону, что и векторное произведение.        Наряду с угловой скоростью вращения используют понятия периода и частоты вращения.Период Т – промежуток времени, в течение которого тело совершает полный оборот (т.е. поворот на угол φ = 2π).        Частота ν – число оборотов тела за 1 секунду.        При вращении с угловой скоростью ω имеем:

,         ,.

       Введем вектор углового ускорения для характеристики неравномерного вращения тела:

 

.

 (2.4.3)

 

       Вектор направлен в ту же сторону, что ипри ускоренном вращении, анаправлен в противоположную сторону при замедленном вращении(рис. 2.13).

Рис. 2.13

       Как и любая точка твердого тела, точка М имеет нормальную и тангенциальную составляющие ускорения. Выразим нормальное и тангенциальное ускорение точки М через угловую скорость и угловое ускорение:

 

 

aτ = Rε;

 (2.4.4)

 

 

 (2.4.5)

 

       Обратите внимание. Все кинематические параметры, характеризующие вращательное движение (угловое ускорение, угловая скорость и угол поворота), направлены вдоль оси вращения.        Формулы простейших случаев вращения тела вокруг неподвижной оси:

     равномерное вращение ε = 0;       ω = const;       φ = φ0 ± ωt,

     равнопеременное вращение .

4Теорема Вариньона ( теорема о моменте равнодействующей силы): момент равнодействующей относительно любой точки = геометрической сумме моментов составляющих сил относительно той же точки. Условия равновесия пространств. сист.сил:

åFkx=0; åFky=0; åFkz=0; åMx(Fk)=0; åMy(Fk)=0; åMz(Fk)=0. Условия равновесия для системы параллельных сил (||z): åFkz=0; åMx(Fk)=0; åMy(Fk)=0. Центр параллельных сил — точка, через которую проходит линия действия равнодействующей системы ||-ых сил при любых поворотах этих сил около их точек приложения в одну и ту же сторону и на один и тот же угол. Координаты центра ||-ых сил:  и т.д.

Условия равновесия пл. сист. сил: векторное: . аналитич:

, или

где А,В,С — точки, не лежащие на одной прямой, или , ось "х" не перпендикулярна отрезку АВ.

Равновесие тел при наличии трения. Закон Кулона (закон Амонта — Кулона): максимальная сила сцепления пропорциональна нормальному давлению тела на плоскость

, fсц — коэффициент сцепления (зависит от материала, состояния поверхностей, определяется экспер-но). Направление силы сцепления противоположно направлению того движения, которое возникло бы при отсутствии сцепления. При скольжении тела по шероховатой поверхности к нему приложена сила трения скольжения. Ее направление противоположно скорости тела , f —коэффициент трения скольжения (определяется опытным путем). f<fсц. Реакция шероховатой (реальной) поверхности в отличии от идеально гладкой имеет две составляющие: нормальную реакцию и силу сцепления (или силу трения при движении). Угол jсц—угол сцепления (jтр — угол трения) tgjсц=fсц (tgjтр=f). Конус с вершиной в точке касания тел, образующая которого составляет угол сцепления (угол трения) с нормалью к поверхностям тела назыв. конусом сцепления (конус трения). Для того чтобы тело начало движение, необходимо (и достаточно), чтобы равнодействующая активных сил находилась вне конуса трения. Трение качения — сопротивление, возникающее при качении одного тела по поверхности другого. Причина его появления в деформации катка и плоскости в точке их соприкосновения и смещения нормальной реакции в сторону возможного движения. Мтр= fkN — момент трения качения, fk — коэффициент трения качения; имеет размерность длины.

Теорема Вариньона о моменте равнодействующей силы.

Если все силы приложены в одной точке, то.

Выражение представляет собой векторную запись теоремы Вариньона.

Теорема Вариньона: момент равнодействующей относительно какой-либо точки равен сумме моментов составляющих сил относительно той же точки

Теорема Вариньона

Теорема Вариньона. Если рассматриваемая плоская система сил приводится к равнодействующей, то момент этой равнодействующей относительно какой-либо точки равен алгебраической сумме моментов всех сил данной системы относительно той оке самой точки. Предположим, что система сил приводится к равнодействующей R, проходящей через точку О. Возьмем теперь в качестве центра при­ведения другую точку O1. Главный момент (5.5) относительно этой точки равен сумме моментов всех сил: MO1Z=åMo1z(Fk)   (5.11). С другой стороны, имеем MO1Z=MOlz(R), (5.12) так как главный момент для центра приведения О равен нулю (MOz=0). Сравнивая соотношения (5.11) и (5.12), получаем MO1z(R)=åMOlZ(Fk); (5.13) ч.т.д. При помощи теоремы Вариньона можно найти уравнение линии действия равнодействующей. Пусть равнодействующая R1 приложена в какой-либо точке О1 с координатами х и у (рис. 5.5) и известны главный вектор Fo и главный момент МОя  при центре приведения в начале координат. Так как R1=Fo, то составляющие равнодей­ствующей по осям х и у равны Rlx=FOx=FOxi и Rly=FOy=Foyj. Согласно теореме Вариньона мо­мент равнодействующей относительно на­чала координат равен главному моменту при центре приведения в начале коорди­нат, т. е. Моz=MOz(R1)=xFOy–yFOx. (5.14). Величины MOz, FOx и Foy при переносе точки приложения равнодействующей вдоль ее линии действия не изменяются, следовательно, на координаты х и у в уравнении (5.14) можно смотреть как на текущие координаты ли­нии действия равнодействующей. Таким образом, уравнение (5.14) есть уравнение линии действия равнодействующей. При Fox≠0 его можно переписать в виде y=(Foy/Fox)x–(Moz/Fox)

5.

Абсолютно упругий удар - соударение двух тел, в результате которого в обоих участвующих в столкновении телах не остается никаких деформаций и вся кинетическая энергия тел до удара после удара снова превращается в первоначальную кинетическую энергию (отметим, что это идеализированный случай). Для абсолютно упругого удара выполняются закон сохранения кинетической энергии и закон сохранения импульса. Обозначим скорости шаров массами m1 и m2 до удара через ν1 и ν2, после удара - через ν1' и ν2' (рис. 1). Для прямого центрального удара векторы скоростей шаров до и после удара лежат на прямой линии, проходящей через их центры. Проекции векторов скоростей на эту линию равны модулям скоростей. Их направления учтем знаками: положительное соотнесем движению вправо, отрицательное - движению влево.

Рис.1

При указанных допущениях законы сохранения имеют вид (1)(2) Произведя соответствующие преобразования в выражениях (1) и (2), получим(3)(4) откуда(5) Решая уравнения (3) и (5), находим(6)

6Способы определения координат центра тяжести

Исходя из полученных ранее общих формул, можно указать способы определения координат центров тяжести твердых тел:

1 Аналитический (путем интегрирования).

2 Метод симметрии. Если тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

3 Экспериментальный (метод подвешивания тела).

4 Разбиение. Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести C  и площадь  S известны. Например, проекцию тела на плоскость xOy  (рисунок 1.8) можно представить в виде двух плоских фигур с площадями S1  и  S2 (S = S1 + S2). Центры тяжести этих фигур находятся в точках  C1(x1, y1) и  C2(x2, y2). Тогда координаты центра тяжести тела равны

Рисунок 1.8

5 Дополнение (метод отрицательных площадей или объемов). Частный случай способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Например, необходимо найти координаты центра тяжести плоской фигуры (рисунок 1.9):

Рисунок 1.9

7Момент относительно точки

Если под действием приложенной силы твердое тело может совершать вращение вокруг некоторой точки, то для того, чтобы охарактеризовать вращательный эффект силы вводится понятие – момент силы относительно точки (или центра).

Моментом силы относительно точки (рисунок 1.1) называется векторное произведение радиус-вектора  точки  приложения силы на вектор силы.                                                 Mo(F) = r  F

Рисунок 1.1

Вектор момента направлен перпендикулярно плоскости, в которой лежат сила и точка, в ту сторону, откуда поворот от действия силы виден происходящим против хода часовой стрелки. Вектор момента характеризует положение плоскости и направление вращательного действия силы, а также дает меру этого действия:

 |Mo(F)| = Frsinα = Fh,

где  h – плечо силы (кратчайшее расстояние от точки  O – центра момента – до линии действия силы). Если сила проходит через точку, то ее момент относительно этой точки равен нулю.

Момент силы относительно точки не меняется от переноса силы вдоль линии ее действия.

Если силы расположены в одной плоскости, то используется понятие алгебраического момента силы. Алгебраическим моментом силы относительно точки (или центра) называется взятое со знаком плюс или минус произведение модуля силы на плечо (рисунок 1.2). 

Знак плюс выбирается в том случае, если сила стремится поворачивать плоскость относительно центра момента против хода часовой стрелки.

рис 1,2

 Если сила F  задана своими проекциями Fx, Fy, Fz  на оси координат и даны координаты x, y, z  точки приложения этой силы, то момент силы относительно начала координат вычисляется следующим образом:

Проекции момента силы   на оси координат равны

8Ускорение любой точки тела при плоском движении равно геометрической сумме ускорения полюса и ускорения во вращении точки относительно полюса.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]