Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
110 (1).doc
Скачиваний:
149
Добавлен:
05.06.2015
Размер:
162.3 Кб
Скачать

Методическое указание к лабораторной работе №1

А.Н. Морковин

Исследование вольт-амперной характеристики полупроводникового диода

Мариуполь, 2012 г.

Цель работы: Изучить особенности, режимы и принципы функционирования полупроводникового диода.

Теоретическое введение

Полупроводниковые диоды — широкий класс твердотельных приборов, предназначенных для осуществления нелинейных преобразований электрических сигналов (выпрямление, детектирование, генерирование и т.д.), преобразования электрической энергии в излучение (светодиоды, лазеры) и, наоборот, преобразования излучения в электрическую энергию (фотопреобразователи, солнечные элементы).

Принцип работы диодов базируется на процессах, протекающих вследствие образования p-n-перехода.

Изучим терминологический аппарат.

Полупроводник — это материал, который по своейудельной проводимостизанимает промежуточное место междупроводникамиидиэлектрикамии отличается отпроводниковсильной зависимостьюудельной проводимостиот концентрации примесей, температуры и воздействия различных видовизлучения.

Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.

Повлиять на электрическую проводимость проводника можно легированием.

Если легировать 4-валентный полупроводник (например, кремний) 5-валентной примесью (например, фосфором) мы получим полупроводник n-типа. В этом случае примесь называетсядонорной. Дополнительный пятый электрон донорной примеси проще переходит в свободное состояние и перенос заряда осуществляется свободными электронами.

Для полупроводника n-типа проводимости электроны являются основными носителями заряда. Дырки —неосновные носители заряда.

При легировании 4-валентного полупроводника (например, кремния) 3-валентной примесью (например, бором) получим полупроводник p-типа. В этом случае примесь называетсяакцепторной. Поскольку 3-валентная примесь, для обеспечения нормальной ковалентной связи в кристаллической решетке, забирает один недостающий электрон кремния, в валентной зоне возникает дырка. Вследствие чего перенос заряда в полупроводнике p-типа имеет дырочную природу.

Для полупроводника p-типа дырки будут являться основными носителями заряда. Электроны — неосновные носители заряда.

Контакт полупроводников n-типа иp-типа, из-за разности концентраций основных носителей заряда, приводит к образованию неподвижного объемного заряда и, как следствие, к нелинейной зависимости тока от подаваемого на p-n-переход напряжения. Данное свойство легло в основу работы полупроводникового диода.

Поскольку простым соединением полупроводников разного типа невозможно добиться образования p-n-перехода, из-за высокой дефектности границы, контакта p- иn-областей добиваются путем легирования ограниченной области полупроводника одного типа примесью другого типа.

Рис. 1. Легирование полупроводника n-типа примесью p-типа для образования p-n-перехода.

Равновесное состояние p-n-перехода

Пусть внутренняя граница раздела двух областей полупроводника с различным типом проводимости является плоскость ММ (см. рис. 2). Слева находится полупроводник p-типа, справа — n-типа.

Т.к. в полупроводнике n-типа концентрация свободных электронов значительно превышает их концентрацию в соседнем полупроводнике p-типа, возникает градиент концентрации, заставляющий основные носители заряда (в данном случае электроны) диффундировать в соседнюю область.

Таким образом, из полупроводника n-типа основные носители заряда (электроны) диффундируют в p-область. Им на встречу, увлекаемые все тем же градиентом концентрации, из p-области в n-область движутся дырки. Мы имеемдиффузионные потокиосновных носителей заряда через p-n-переход.

При этом электроны, перешедшие из n-области в p-область, рекомбинируют вблизи границы раздела этих областей с дырками p-области; точно также дырки, перешедшие из p-области в n-облатсь, рекомбинируют здесь с электронами этой области. В результате этого в приконтактном слое n-области практически не остается свободных электронов и в нем формируетсянеподвижный объемный положительный зарядионизированных доноров.

В приконтактном слое p-области практически не остается дырок и в нем формируется неподвижный объемный отрицательный заряд ионизированных акцепторов.

Неподвижный объемный заряд создает в p-n-переходе контактное электрическое полес определенной разностью потенциалов, локализованное в области перехода и практически не выходящее за его приделы. Поэтому вне слоя, где поля нет, свободные носители заряда движутся по-прежнему хаотично и число носителей, ежесекундно наталкивающихся на слой объемного заряда, зависит только от их концентрации и скорости теплового движения.

Если в слой объемного заряда влетает неосновной носитель (электрон для p-области или дырка для n-области), то контактное поле подхватывает его и перебрасывает через этот слой. Получается, что каждый неосновной носитель заряда, налетающий на p-n-переход, проходит через него.

Наоборот, основные носители заряда (электроны для n-области и дырки для p-области) могут перелетать через слой объемных зарядов лишь в том случае, если кинетическая энергия их движения вдоль оси xдостаточна для преодоления контактной разности потенциалов. Поэтому, как только образуются объемные заряды у границы раздела ММ, потоки основных носителей, пересекающих эту границу, уменьшаются. Если, однако, эти потоки все еще превышают встречные потоки неосновных носителей, остающиеся неизменными, объемный заряд будет увеличиваться. Это увеличение продолжается до тех пор, пока потоки основных носителей, уменьшаясь, не сравняются с потоками неосновных носителей. Таким образом, устанавливаетсядинамическое равновесное состояние перехода.

Рис. 2. P-n-переход и объемный заряд.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]