Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_Lectcii.doc
Скачиваний:
412
Добавлен:
07.06.2015
Размер:
2.55 Mб
Скачать

25

    1. Элементы биомеханики 5

    2. Механические колебания 14

    3. Биофизика слуха. Звук. Ультразвук 17

    4. Биофизика кровообращения 21

    5. Электрические свойства тканей и органов 28

    6. Электрокардиография. Реография 33

    7. Основы электротерапии 36

    8. Биофизика зрения. Оптические приборы 40

1.9 Тепловое излучение и его характеристики 45

2.0 Рентгеновское излучение 49

2.1 Элементы радиационной физики. Основы дозиметрии 54

3. Диадинамик является одним из наиболее известных аппаратов электротерапии, использующих обезболивающее и спазмолитическое воздействие низкочастотных токов в лечебных целях, например для улучшения кровообращения в организме. Процедура назначается исключительно врачом, продолжительность 3-6 минут (при острых состояниях ежедневно, при хронических заболеваниях 3 раза в неделю 5-6 минут).

Показания: заболевания опорно-двигательного аппарата, в особенности боли в суставах и

Позвоночника

Электросон - метод электротерапии, при котором используются импульсные токи низкой или звуковой частоты (1-130 Гц), прямоугольной формы, малой силы (до2-3 мА) и напряжения (до 50 В), вызывающие при длительном применении сонливость, дремоту, а затем сон различной глубины и продолжительности.

Показания: заболевания внутренних органов (хроническая ишемическая болезнь сердца, гипертоническая болезнь, гипотоническая болезнь, ревматизм, язвенная болезнь желудка и двенадцатиперстной кишки, гипотиреоз, подагра), заболевания нервной системы (атеросклероз сосудов головного мозга в начальной стадии, травматическая церебропатия, гипоталамический синдром, мигрень, неврастения, астенический синдром, маниакально депрессивный психоз, шизофрения).

Амплипульстерапия - один из методов электротерапии, основанный на использовании с лечебно-профилактическими и реабилитационными целями синусоидальных модулированных токов.

Незатухающие гармонические колебания

Гармонические колебания совершаются под действием упругих или квазиупругих (подобные упругим) сил, описываемых законом Гука:

,

где F – сила упругости;

х смещение;

k – коэффициент упругости или жесткости.

Согласно ІІ закону Ньютона , гдеа – ускорение, а = .

(1)

Разделим уравнение (1) на массу m и введем обозначение , получим уравнение в виде:

(2).

Уравнение (2) – дифференциальное уравнение незатухающих гармонических колебаний.

Его решение имеет вид: или.

Характеристики незатухающих гармонических колебаний:

х – смещение; А – амплитуда; Т – период; – частота;  – циклическая частота, – скорость;– ускорение,– фаза;0 – начальная фаза, Е – полная энергия.

Формулы:

–число колебаний, – время, за которое совершаетсяN колебаний;

, ; или;

или ;

–фаза незатухающих гармонических колебаний;

–полная энергия гармонических колебаний.

Затухающие гармонические колебания

В реальных системах, участвующих в колебательном движении, всегда присутствуют силы трения (сопротивления):

, – коэффициент сопротивления;– скорость.

.

Тогда ІІ закон Ньютона запишем:

(2)

Введем обозначения ,, где– коэффициент затухания.

Уравнение (2) запишем в виде:

(3)

Уравнение (3) – дифференциальное уравнение затухающих колебаний.

Его решение , где

–амплитуда колебаний в начальный момент времени;

–циклическая частота затухающих колебаний.

Амплитуда колебаний изменяется по экспоненциальному закону:

.

Рис. 11. График x=f(t)

Рис. 12. График At=f(t)

Характеристики:

1) – период затухающих колебаний;2) – частота затухающих колебаний; – собственная частота колебательной системы;

3) логарифмический декремент затухания (характеризует скорость убывания амплитуды):.

Вынужденные колебания

Для получения незатухающих колебаний необходимо воздействие внешней силы, работа которой восполняла бы вызванное силами сопротивлений уменьшение энергии колеблющейся системы. Такие колебания называются вынужденными.

Закон изменения внешней силы: , где– амплитуда внешней силы.

ІІзакон Ньютона запишем в виде

Введем обозначения .

Уравнение вынужденных колебаний имеет вид:

.

Решение этого уравнения в установившемся режиме:

,

где

(4)

– частота вынужденных колебаний.

Из формулы (4), когда , амплитуда достигает максимального значения. Это явление называется резонансом.

1.3 Биофизика слуха. Звук. Ультразвук.

Волна – это процесс распространения колебаний в упругой среде.

Уравнение волны выражает зависимость смещения колеблющейся точки, участвующей в волновом процессе, от координаты ее равновесного положения и времени: S = f (x ;t).

x

x

"0"

r

Рис. 13

Если S и X направлены вдоль одной прямой, то волна продольная, если они взаимно перпендикулярны, то волна поперечная.

Уравнение в точке "0" имеет вид . Фронт волны дойдет до точки "х" с запаздыванием за время.

Уравнение волны имеет вид .

Характеристики волны:

S – смещение, А – амплитуда, – частота,Т – период, – циклическая частота,– скорость.

–фаза волны, – длина волны.

Длиной волны называется расстояние между двумя точками, фазы которых в один и тот же момент времени отличаются на .

Фронт волны – совокупность точек имеющих одновременно одинаковую фазу.

Поток энергии равен отношению энергии, переносимой волнами через некоторую поверхность, к времени, в течении которого эта энергия перенесена:

, .

Интенсивность: , площадь, .

Вектор интенсивности, показывающий направление распространения волн и равный потоку энергии волн через единичную площадь, перпендикулярную этому направлению, называется вектором Умова.

–плотность вещества.

Звуковые волны

Звук – это механическая волна, частота которой лежит в пределах ,– инфразвук,– ультразвук.

Различают музыкальные тоны (это монохроматическая волна с одной частотой или состоящая из простых волн с дискретным набором частот – сложный тон).

Шум – это механическая волна с непрерывным спектром и хаотически изменяющимися амплитудами и частотами.

Характеристики звука

Энергетической характеристикой звука является интенсивность.

На практике для оценки звука удобнее использовать звуковое давление.

Звуковое давление () – это избыток давления в звуковой волне над атмосферным.

, ,

где – скорость звука,– интенсивность звуковой волны.

Характеристики слухового ощущения

Высота тона – зависит от частоты, чем выше частота, тем выше звук (определяется минимальной частотой акустического спектра, рис. 14).

Т

Рис. 14. Акустический спектр

ембр –"окраска" звука, зависит от состава акустического спектра (совокупность простых волн, образующих сложные).

Громкость – субъективная характеристика звука, которая характеризует уровень слухового ощущения.

– коэффициент пропорциональности, зависящий от частоты и интенсивности;

– интенсивность исследуемого звука;

– порог слышимости;– порог болевых ощущений.

Для ,,.

Единицей измерения громкости, является Белл – это громкость звука, которая при имеет, при этом.

.1 Децибел (дБ) или 1 фон = 0,1 Б.

Зависимость громкости от частоты учитывают с помощью кривых равных громкостей, получаемых экспериментально, и используется для оценки дефектов слуха. Метод измерения остроты слуха называется аудиометрия. Прибор для измерения громкости называетсяшумомер. Норма громкости звука должна составлять 40 – 60 дБ.

Ультразвук

Ультразвук– это механическая волна с частотой. Верхним пределом ультразвуковой частоты можно считать10 9 10 10 Гц.

В 1880 г. П. Кюри открыл пьезоэффект.

Для получения ультразвука используют ультразвуковые излучатели, основанные на обратном пьезоэлектрическом эффекте: кэлектродам прикладывается переменное электрическое поле и пластинка кварца (сегнетовой соли, титаната бария) начинает вибрировать, излучая механическую волну определенной частоты.

Приемник ультразвука использует прямой пьезоэффект: возникновение разности потенциалов на гранях пьезокристалла при его деформации.

Свойства ультразвука используемые в медицине

Первичным механизмом ультразвуковой терапии является механическое и тепловое действие на ткань.

1. Высокая частота соответствует большой интенсивности ультразвука:

,пропорционально();

, тогдапропорционально.

Свойства большой интенсивности используются для разрушения биомакромолекул, клеток и микроорганизмов, применяется в урологии для разрушения камней и др.

2. Соотношение длины волны илинейных размеров препятствияопределяет поведение ультразвука.

еслито.

а) Если соизмерим с, то наблюдается явление дифракции.

Дифракция – это огибание волной препятствия.

б) Если , то наблюдается ультразвуковая тень, а также отражение и поглощение ультразвуковой волны (УЗ – эхолокация).

в) Поглощение. При переходе из одной среды в другую интенсивность ультразвука изменяется по формуле: ;

где волновое сопротивление.

Волновое сопротивление биологических сред в 3000 раз больше воздуха. Поэтому, если УЗ-излучатель приложить к телу человека, то ультразвук не проникает и будет отражаться. Чтобы исключить воздушный слой, поверхность УЗ-излучателей покрывают слоем масла.

Эти свойства используются в ультразвуковой диагностике, применяя диапазон частот от 1 до 20 МГц и , которая не вызывает никаких патологических изменений в биологических тканях.

3. Явление кавитации– это сжатие и разряжение частиц среды, приводящие к образованию разрывов сплошной среды (при). При кавитации выделяется энергия, происходит нагревание веществ, а также ионизация и диссоциация молекул.

Обычно для терапевтических целей применяют ультразвук

,.

Проходя через биоткань интенсивность ультразвука уменьшается по закону:

d–толщина биоткани;– монохроматический коэффициент поглощения (для разных длин волн– разный).

Эффект воздействия ультразвука на клетку:

микромассаж на клеточном и субклеточном уровне;

изменение проницаемости мембран клетки (перестройка и повреждение);

улучшение обменных процессов (рассасываются инфильтраты);

разрушение клеток и микроорганизмов;

тепловое действие.

Эффект воздействия ультразвука на вещество:

перемешивание слоев жидкости и газообразной среды, обусловленное явлением кавитации, приводит к выделению тепла;

прохождение ультразвука через вещество может сопровождаться люминесценцией (свечение вещества);

фонофорез– введение лекарственных веществ под воздействием ультразвука вследствие изменения проницаемости мембран.

Способность ультразвука дробить тела, помещенные в жидкость, и создавать эмульсии используется в фармацевтической промышленности при изготовлении лекарств. При лечении бронхиальной астмы, катаракты верхних дыхательных путей применяются аэрозоли различных лекарственных веществ, полученных с помощью ультразвука.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]