Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

fizika / 4

.docx
Скачиваний:
35
Добавлен:
09.06.2015
Размер:
156.87 Кб
Скачать
    1. Условия, необходимые для наблюдения интерференции света

Интерфере́нция све́та — перераспределение интенсивности света в результате наложения нескольких световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной.

-Мо́нохромати́ческое излуче́ние

-Разность фаз(0,pi/2,pi…)

-Когерентность

Волны должны иметь одинаковую частоту(также длину волны) и постоянную разность фаз, т.е. волны должны быть когерентными. Источники таких волн будут называться когерентными.

В некоторых учебниках и пособиях говорится о том, что интерференция света возможна только для волн образованных от одного источника света путём амплитудного либо полевого деления волновых фронтов. Это утверждение является неверным. С точки зрения принципа суперпозиции интерференция существует всегда, даже когда интерферируют волны от двух разных источников света. Правильно было бы говорить о наблюдении или возможности наблюдения интерференционной картины. Последняя может быть нестационарна во времени, что приводит к замазыванию и исчезновению интерференционных полос.

    1. Интерференция в тонких пленках(цвета тонких плёнок)

Сравнительно просто такую картину можно получить, сделав так, чтобы интерферировали волны одного и того же цуга[1]. Так, интерференция возникает при разделении первоначального луча света на два луча при его прохождении через тонкую плёнку, например плёнку, наносимую на поверхность линз у просветлённых объективов. Луч света, проходя через плёнку толщиной , отразится дважды — от внутренней и наружной её поверхностей. Отражённые лучи будут иметь постоянную разность фаз, равную удвоенной толщине плёнки, от чего лучи становятся когерентными и будут интерферировать. Полное гашение лучей произойдет при

В приближении геометрической оптики, когда есть смысл говорить об оптической разности хода лучей, для двух лучей.

— условие максимума;

— условие минимума,

где k=0,1,2… и — оптическая длина пути первого и второго луча, соответственно.

Явление интерференции наблюдается в тонком слое несмешивающихся жидкостей (керосина или масла на поверхности воды), в мыльных пузырях, бензине, компакт-дисках, на крыльях бабочек, в цветах побежалости, и т. д.

Цвета интерференций на тонких пленках зависят от цвета источника(если источник светит белым, то интерференция будет составлена из всех цветов радуги)

  1. Скорость света и методы её определения

На данный момент считают, что скорость света в вакууме — фундаментальная физическая постоянная, по определению, точно равная 299 792 458 м/с, обычно используют значение 300 000 000 м/с (3×108 м/с).

Согласно концепции переме́нной ско́рости све́та (ПСС) считается, что скорость света в вакууме, обычно обозначаемая c, в некоторых случаях может не быть константой. В большинстве ситуаций в физике конденсированного состояния распространение света в среде действительно происходит с меньшей скоростью, чем в вакууме.

Астрономические методы

Первое удачное измерение скорость света относится к 1676 г. Астрономический метод Рёмера основывается на измерении скорости света по наблюдениям с Земли затмений спутников Юпитера. Юпитер имеет несколько спутников, которые либо видны с Земли вблизи Юпитера, либо скрываются в его тени. Астрономические наблюдения над спутниками Юпитера показывают, что средний промежуток времени между двумя последовательными затмениями какого-нибудь определенного спутника Юпитера зависит от того, на каком расстоянии друг от друга находятся Земля и Юпитер во время наблюдений.

Проводя наблюдения затмений Рёмер заметил, что моменты затмений сдвигаются во времени в зависимости от положения Земли на орбите, а именно, когда Земля находится ближе к Юпитеру, моменты затмений наступают ранее усреднённых на больших интервалах времени средних значений, а когда Земля находится дальше от Юпитера — отстают. Для объяснения этих колебаний моментов затмений Рёмер предположил, что скорость света конечна и рассчитал её по результатам своих наблюдений. По его вычислениям, скорость света оказалась равна 220 000 км/с, что на 26 % ниже современного значения (~300 000 км/с). Эта существенная ошибка объясняется тем, что в то время были неизвестны с достаточной точностью величина астрономической единицы и элементы орбиты Юпитера.

Метод Брэдли

В 1725 г. Джеймс Брэдли обнаружил, что звезда Дракона, находящаяся в зените (т.е. непосредственно над головой), совершает кажущееся движение с периодом в один год по почти круговой орбите с диаметром равным 40,5 дуговой секунды. Для звезд, видимых в других местах небесного свода, Брэдли также наблюдал подобное кажущееся движение — в общем случае эллиптическое.

Явление, наблюдавшееся Брэдли, называется аберрацией. Оно не имеет ничего общего с собственным движением звезды. Причина аберрации заключается в том, что величина скорости света конечна, а наблюдение ведется с Земли, движущейся по орбите с некоторой скоростью v.

Угол раствора конуса, под которым с Земли видна кажущаяся траектория звезды, определяется выражением: tgα=ν/c

Зная угол α и скорость движения Земли по орбите v, можно определить скорость света c.

Экспериментальные методы

В 1849 г. впервые определение скорости света выполнил вы лабораторных условиях А. Физо. Его метод назывался методом зубчатого колеса. Характерной особенностью его метода является автоматическая регистрация моментов пуска и возвращения сигнала, осуществляемая путем регулярного прерывания светового потока (зубчатое колесо).

Свет от источника проходил через прерыватель (зубья вращающегося колеса) и, отразившись от зеркала, возвращался опять к зубчатому колесу. Зная расстояние между колесом и зеркалом, число зубьев колеса, скорость вращения, можно вычислить скорость света.

Зная расстояние D, число зубьев z, угловую скорость вращения (число оборотов в секунду) v, можно определить скорость света. У него получилось она равной 313000 км/с.

Разрабатывали много способов, чтобы еще повысить точность измерений. Вскоре даже стало необходимо учитывать показатель преломления в воздухе. И вскоре в 1958 г. Фрум получил значение скорости света равной 299792,5 км/с, применяя микроволновый интерферометр и электрооптический затвор (ячейку Керра).

В 1972 г. значение скорости света было определено на основе независимых измерений длины волны и частоты света. В качестве источника был выбран, по ряду причин, гелий-неоновый лазер, генерирующий излучение с длиной волны 3,39 мкм. Длина волны этого излучения измерялась с помощью интерферометрического сравнения с эталоном длины, т.е. с длиной волны оранжевого излучения криптона. Методами нелинейной оптики (генерация излучения с суммарными и разностными гармониками) частоту лазерного излучения удалось сравнить с эталоном времени. Таким образом было получено значение скорости света с=ln, превосходящее по точности все ранее известные значения более чем на два порядка с=299 792 456,2 ± 1,1 м/с.

Соседние файлы в папке fizika