Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
госы, новое, 2.docx
Скачиваний:
206
Добавлен:
10.06.2015
Размер:
241.62 Кб
Скачать

2.Современные методы селекции. Источники изменчивости для искусственного отбора.

Селекция-это наука о совершенствовании существующих и выведения новых пород животных,сортов растений,а так же практическая деятельность человека в этих направлениях.

Современная селекция использует различные методы. Главные из них:

-изучение существующего в природе многообразия видов, пород и сортов для использования их в качестве исходного материала для селекции;

-искусственный отбор особей, обладающих важными для селекционера признаками;

Одним из основных методов селекции является искусственный отбор, предполагающий сохранение и размножение организмов с признаками, ценными и полезными для человека. Обычно используют два вида искусственного отбора. Массовый отбор проводят без учета генотипа организмов, только по внешним признакам, т.е. на основании фенотипа, поэтому отобранные организмы генетически неоднородны. Метод массового отбора всегда требует повторного отбора и действует медленно. Индивидуальный отбор предполагает изучение генотипа родительских организмов, анализ потомков, проведение близкородственных скрещиваний и получение чистых линий, характеризующихся генетической однородностью.

-искусственное получение мутаций путем воздействия мутагенными факторами;

Факторы, воздействие которых на организм приводит к появлению мутаций, называются мутагенами. Обычно мутагены подразделяют на три группы. Для искусственного получения мутаций используются физические и химические мутагены.

Название группы мутагенов:

А)Физические Рентгеновские лучи, гамма-лучи, ультрафиолетовое излучение, высокие и низкие температуры и др.

Б)Химические Соли тяжелых металлов, алкалоиды, чужеродные ДНК и РНК, аналоги азотистых оснований нуклеиновых кислот, многие алкилирующие соединения и др.

В)Биологические Вирусы, бактерии

Индуцированный мутагенез имеет большое значение, поскольку дает возможность создания ценного исходного материала для селекции, а также раскрывает пути создания средств защиты человека от действия мутагенных факторов.

-гибридизация;

В современной селекции широко используется гибридизация (от греч. hybris – помесь) – естественное или искусственное скрещивание особей, отличающихся по своим признакам и относящихся к разным сортам, породам, штаммам, видам. Применяют несколько видов скрещивания, в том числе родственное и неродственное:

1. Близкородственное скрещивание, или инбридинг (у перекрестноопыляемых растений – принудительное самоопыление). Инбридинг приводит к тому, что потомки становятся гомозиготными, т.е. повышается степень гомозиготных организмов. Так выводят чистые линии организмов, широко применяемые в селекции. При дальнейшем скрещивании особей двух чистых линий, одна из которых гомозиготна по доминантным генам, а другая по рецессивным, гибриды первого поколения F1 по ряду признаков часто превосходят исходные родительские организмы – может резко повыситься урожайность и жизнеспособность. В селекции растений и животных это явление занимает особое место и называется гибридной мощностью, или гетерозисом. Однако в последующих поколениях гетерозис снижается, наблюдается вырождение потомков, поэтому в практике обычно используют только гибриды F1. Связано это с тем, что у потомков всё в большей степени начинают накапливаться и проявляться рецессивные мутации.

2. Неродственное скрещивание, или аутбридинг. Скрещивают организмы, относящиеся к разным линиям внутри сорта (или породы), к разным сортам (или породам), к разным видам или даже родам. В двух последних случаях речь идёт об отдаленной гибридизации. Скрещивание организмов, относящихся к разным видам и тем более родам, крайне сложно, т.к. родительские организмы отличаются по генетическому материалу, физиологическим или морфологическим признакам. Очень часто такое скрещивание приводит к образованию бесплодных (т.е. не дающих потомство) гибридов. Связано это с тем, что в гибридном организме встречаются родительские хромосомы, столь несхожие между собой морфологически, а часто и по числу, что они не способны к конъюгации, это ведет к нарушениям процесса мейоза, а, следовательно, и не формируются нормальные половые клетки (гаметы). Однако способность растений к вегетативному размножению, а также разработка специальных методов преодоления бесплодия у отдаленных гибридов в ряде случаев делает возможным формирование новых форм, обладающих определенными ценными качествами, характерными для разных видов. Бурное развитие новых методов исследований в генетике, расширение и углубление наших представлений о структуре и законах организации наследственного аппарата клетки обусловили создание и разработку принципиально новых методов. Родились новые понятия и направления современной генетики: клеточная, хромосомная инженерия и генная инженерия. При этом принципиальное отличие данных методов от традиционно используемых в селекции, состоит в целенаправленном, а не случайном расширении границ изменчивости генотипа, в планируемом разнообразии исходного материала для селекции. Эти современные методы большее применение пока получили в селекции растений. Клеточная инженерия связана с культивированием отдельных клеток или тканей на специальных искусственных средах. Показано, что если взять кусочки ткани или отдельные клетки из разных органов, допустим, растений, хотя это возможно и у животных, и пересадить их на специальные среды, содержащие минеральные соли, аминокислоты, гормоны и другие питательные компоненты, то они способны расти. Это значит, что в таких изолированных от организма тканях и клетках продолжаются клеточные деления. Но самым важным и интересным оказалось то, что отдельные растительные клетки (в отличие от клеток животных) в таких искусственных условиях обладают тотипотентностью, т.е. способны к регенерации (формированию) полноценных растений. Эта их способность и была использована для селекции в разных направлениях.

Вторым новейшим методом клеточной селекции у растений, уже давшим огромный эффект, является метод гаплоидов (организмы с уменьшенным вдвое числом хромосом, у которых в ядрах клеток из каждой пары гомологичных хромосом, характерных для диплоидов присутствует только одна хромосома.) Например, если у кукурузы диплоидные растения имеют 10 пар хромосом (всего 20), то гаплоидные – всего 10 хромосом. Гаметы, в том числе мужские (пыльцевые зерна), имеют гаплоидный набор хромосом. Этот факт и был использован для получения гаплоидных растений.

Сейчас разработан метод проращивания пыльцевых зерен на искусственных питательных средах в пробирках и получения из них полноценных гаплоидных растений. В основе ее лежит гибридизация, в результате которой получаются гетерозиготные организмы, а затем длительная гомозиготизация до восьмого поколения, т.е. получение стабильных нерасщепляющихся форм. На создание сорта таким методом уходит более 10 лет. С помощью гаплоидов этот срок можно сократить в 2 раза. Для этого получают гибриды, берут из них пыльцу, на питательных средах в пробирках регенерируют из нее гаплоидные растения, а затем удваивают у них число хромосом и сразу получают полностью гомозиготные диплоидные растения. Вся эта процедура вместо 6-8 лет занимает 2-3 года. Так как мы берем пыльцу из гибридных растений и получаем через гаплоидные растения сразу гомозиготные диплоидные, то остается только оценить их и затем размножить лучше.

Хромосомная инженерия. В настоящий момент связывается прежде всего с возможностями замещения (замены) отдельных хромосом у растений или добавления новых. Известно, что в клетках каждого диплоидного организма имеются пары гомологичных хромосом. Такой организм называют дисомиком. Если в какой-либо паре хромосом остается одна гомологичная хромосома, то получается моносомик. При добавлении третьей гомологичной хромосомы возникает трисомик, а при отсутствии в геноме одной пары гомологичных хромосом возникает нуллисомик. Такие манипуляции с хромосомами дают возможность заменять одну или обе гомологичные хромосомы, допустим, одного сорта пшеницы на ту же пару хромосом, но из другого сорта. Тем самым он может один признак, который ему кажется слабым у данного сорта , заменить на этот же, но более сильный признак из другого сорта. Таким образом, он приближается к созданию « идеального» сорта, у которого все полезные признаки будут выражены в максимальной степени. Эту же цель преследует и методика замены отдельных хромосом одного вида на хромосомы другого вида, близкого по своему происхождению.

Генная инженерия. Под генной инженерией обычно понимают искусственный перенос нужных генов от одного вида живых организмов (бактерий, животных, растений) в другой вид, часто очень далекий во своему происхождению. Чтобы осуществить перенос генов (или трансгенез), необходимо выполнить следующие сложные операции:

выделение из клеток бактерий, животных или растений тех генов, которые намечены для переноса. Иногда эту операцию заменяют искусственным синтезом нужных генов, если таковой оказывается возможным;

создание специальных генетических конструкций (векторов), в составе которых намеченные гены будут внедряться в геном другого вида. Такие конструкции кроме самого гена должны содержать все необходимое для управления его работой (промоторы,терминаторы) и гены-«репортеры», которые будут сообщать, что перенос успешно осуществлен;внедрение генетических векторов сначала в клетку, а затем в геном другого вида и выращивание измененных клеток в целые организмы (регенерация). Растения и животные, геном которых изменен в результате таких генно-инженерных операций, получили название трансгенных растений или животных.

Билет 15