Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

gista_shpory_k

.docx
Скачиваний:
16
Добавлен:
10.06.2015
Размер:
75.95 Кб
Скачать

15) Постэмбриональный гемоцитопоэз. Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови, который компенсирует физиологическое разрушение дифференцированных клеток. Он подразделяется на миелопоэз и лимфопоэз.Миелопоэз происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Здесь развиваются эритроциты, гранулоциты, моноциты, тромбоциты и предшественники лимфоцитов.Предшественники лимфоцитов постепенно мигрируют и заселяют тимус, селезенку, лимфоузлы и некоторые другие органы. Лимфопоэз происходит в лимфоидной ткани, которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфоузлах. Она выполняет функции образования T- и B-лимфоцитов Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т.е. относятся к тканям внутренней среды. В них представлены две клеточные линии — клетки ретикулярной ткани и гемопоэтические клетки.Ретикулярные, а также жировые, тучные клетки вместе с межклеточным веществом формируют микроокружение для гемопоэтических элементов. Микроокружение оказывает воздействие на дифференцировку клеток крови , для миелоидной и лимфоидной ткани характерно наличие стромальных и гемопоэтических элементов, образующих единое целое.СКК относятся к самоподдерживающейся популяции клеток. Они редко делятся.Пролиферативную активность СКК регулируют колониестимулирующие факторы (КСФ). Каждая СКК образует одну колонию и называется колониеобразующей единицей ( КОЕ).Исследование клеточного состава колоний позволило выявить две линии их дифференцировки. Одна линия дает начало мультипотентной клетке — родоначальнице гранулоцитарного, эритроцитарного, моноцитарного и мегакариоцитарного рядов гемопоэза ( КОЕ-ГЭММ). Вторая линия дает начало мультипотентной клетке — родоначальнице лимфопоэза (КОЕ-Л). Из мультипотентных клеток дифференцируются олигопотентные (КОЕ-ГМ) и унипотентные родоначальные клетки. Методом колониеобразования определены родоначальные унипотентные клетки для моноцитов (КОЕ-М), нейтрофильных гранулоцитов (КОЕ-Гн), эозинофилов (КОЕ-Эо), базофилов (КОЕ-Б), эритроцитов (БОЕ-Э и КОЕ-Э..Все приведенные выше стадии развития клеток составляют четыре основных класса, гемопоэза: I класс — СКК - стволовые клетки крови (плюрипотентные, полипотентные);II класс — КОЕ-ГЭММ и КОЕ-Л - коммитированные мультипотентные клетки (миелопоэза или лимфопоэза);III класс — КОЕ-М, КОЕ-Б и т.д. - коммитированные олигопотентные и унипотентные клетки;IV класс — клетки-предшественники (бласты, напр.: эритробласт, мегакариобласт и т.д.).

23) Общая характ. мышечных тканей. Гладкая мышечная ткань. Мышечными ткани-это различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве всего организма в целом или его частей и движение органов внутри организма(ф-ция двигательная). Основные морфологические признаки: удлиненная форма клеток, продольно расположенные миофибриллы и миофиламенты — специальные органеллы, обеспечивающие сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков — актина и миозина при обязательном участии ионов кальция. гладкая (агранулярная)ЭПС хорошо развита , митохондрии рядом с сократительными элементами, включения гликогена, липидов Миоглобин — белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко падает). нервные окончания на каждой клетке , тесные контакты между клетками . В основу классификации мышечных тканей положены два принципа — морфофункциональный( поперечнополосатые и гладкие мышечные ткани)и гистогенетический (1. ГМТ 1) мезенхимные 2) эпидермальные 3) нейральные 2. ППМТ 1) Скелетные МТ 2) Сердечные). В зависимости от источника развития мышечные ткани делятся на 1) мезенхимные (гладкие мышцы внутренних органов и сосудов 2) эпидермалъные (миоэпите-лиальные клетки) 3) нейральные мышцы, суживающие и расширяющие зрачок 4) целомические (сердечная мышца) и 5) соматические (миотомные, скелетные). Первые три типа относятся к гладким мышечным тканям, четвертый и пятый - к поперечнополосатым. По происхождению различают три группы гладких мышечных тканей — мезенхимные, эпидермальные и нейральные. Мышечная ткань мезенхимного происхождения Представлена в стенках кровеносных сосудов и многих трубчатых внутренних органов, образует отдельные мелкие мышцы (цилиарные). Клетка: Гладкий миоцит — веретеновидная клетка длиной 20—500 мкм, шириной 5—8 мкм. Ядро палочковидное.Когда миоцит сокращается, его ядро изгибается и закручивается. Органеллы, среди которых много митохондрий, сосредоточены около полюсов ядра. Аппарат Гольджи и гранулярная ЭПС развиты слабо. Рибосомы расположены свободно. В цитоплазме содержит тонкие (5-8 нм) и толстые (13-18 нм) миофиламенты( актиновые и миозиновые). Мышечная ткань эпидермального происхождения Миоэпителиальные клетки развиваются из эпидермального зачатка. Они встречаются в потовых, молочных, слюнных и слезных железах . Большинство миоэпителиальных клеток имеют звездчатую форму. Эти клетки нередко называют корзинчатыми: их отростки охватывают концевые отделы и мелкие протоки желез. Мышечная ткань нейрального происхождения Миоциты этой ткани развиваются из клеток нейрального зачатка в составе внутренней стенки глазного бокала. Тела этих клеток располагаются в эпителии задней поверхности радужки. Каждая из них имеет отросток, который направляется в толщу радужки и ложится параллельно ее поверхности. В отростке находится сократительный аппарат, организованный так же, как и во всех гладких миоцитах. В зависимости от направления отростков миоциты образуют две мышцы — суживающую и расширяющую зрачок.

Гистогенез ГМТ в эмбриональном периоде развивается из мезенхимы. Вначале мезенхимные клетки имеют звездчатую, отросчатую форму, а при дифференцировке в ГМ-клетки приобретают веретеновидную, овальную форму – миобласты (способны к размножению); в цитоплазме накапливаются органоиды спецназначения - миофибриллы из актина и миозина.Регенерация ГМТ 1. Митоз миоцитов после дедифференцировки: миоциты утрачивают сократительные белки, исчезают митохондрии и превращаются в миобласты. Миобласты начинают размножаться, а потом вновь дифференцируются в зрелые леомиоциты. 2. Возможно образование новых ГМ-клеток из малодифференцированных стволовых клеток фибробластического дифферона рыхлой с.д.т..

24)Скелетные мышечная ткань. структура миофибрилл. Гистогенез Источником развития элементов скелетной мышечной ткани являются клетки миотомов — миобласты. Одни из них дифференцируются на месте и участвуют в образовании аутохтонных мышц. Другие клетки мигрируют из миотомов в мезенхиму В ходе дифференцировки возникают две клеточные линии. Клетки одной из линий сливаются, образуя удлиненные симпласты — мышечные трубочки (миотубы). В них происходит дифференцировка специальных органелл — миофибрилл. Миофибриллы сначала располагаются под плазмолеммой, а затем заполняют большую часть миотубы. Ядра из центральных отделов смещаются к периферии. Клеточные центры и микротрубочки при этом полностью исчезают.Такие дефинитивные структуры называют миосимпластами.Клетки другой линии остаются самостоятельными и дифференцируются в миосателлитоциты (или миосателлиты). Эти клетки располагаются на поверхности миосимпластов. Структурно-функциональной единицей является мышечное волокно, состоящее из миосимпласта и миосателлитоцитов, покрытых базальной мембраной.Оно включает большое число ядер, саркоплазму. В саркоплазме находятся: - органоиды спецназначения - миофибриллы - митохондрии - Т-система , включенияя (особенно гликоген). Комплекс, состоящий из плазмолеммы миосимпласта и базальной мембраны, называют сарколеммой. Миосимпласт имеет множество продолговатых ядер, расположенных под сарколеммой. У полюсов ядер располагаются органеллы общего значения — аппарат Гольджи , фрагменты гранулярной эндоплазматической сети. Миофибриллы заполняют основную часть миосимпласта . Саркомер — это структурная единица миофибриллы. Каждая миофибрилла имеет поперечные темные и светлые диски, имеющие неодинаковое лучепреломление .Каждая миофибрилла окружена продольно расположенными между собой петлями агранулярной эндоплазматической сети — саркоплазматической сети. Соседние саркомеры имеют общую пограничную структуру — Z-линию . Она построена в виде сети из белковых фибриллярных молекул, среди которых существенную роль играет альфа-актинин. С этой сетью связаны концы тонких, актиновых, филаментов. От соседних Z-линий актиновые филаменты направляются к центру саркомера, но не доходят до его середины. Филаменты актина объединены с Z-линией и нитями миозина фибриллярными нерастяжимыми молекулами небулина. Посередине темного диска саркомера располагается сеть, построенная из миомезина. Она образует в сечении М-линию, или мезофрагму. В узлах этой М-линии закреплены концы толстых, миозиновых филаментов. Другие их концы направляются в сторону Z-линий и располагаются между филаментами актина, но до самих Z-линий тоже не доходят. Вместе с тем эти концы фиксированы по отношению к Z-линиям растяжимыми гигантскими белковыми молекулами титина.

25) Гистофизиология мышечного сокращения) Молекулы миозина имеют длинный хвост и на его конце две головки. При повышении концентрации ионов кальция в области присоединения головок молекула миозина изменяет свою конфигурацию. При этом головки миозина связываются с актином (при участии вспомогательных белков — тропомиозина и тропонина). Затем головка миозина наклоняется и тянет за собой актиновую молекулу в сторону М-линии. Z-линии сближаются, саркомер укорачивается.Альфа-актининовые сети Z-линий миофибрилл связаны друг с другом промежуточными филаментами. Они подходят к внутренней поверхности плазмолеммы и закрепляются в кортикальном слое цитоплазмы, так что саркомеры всех миофибрилл располагаются на одном уровне. Это и создает при наблюдении в микроскоп впечатление поперечной исчерченности всего волокна.Источником ионов кальция служат цистерны агранулярной эндоплазматической сети. Они вытянуты вдоль миофибрилл около каждого саркомера и образуют саркоплазматическую сеть. Именно в ней аккумулируются ионы кальция, когда миосимпласт находится в расслабленном состоянии. На уровне Z-линий (у амфибии) или на границе А- и I-дисков (у млекопитающих) канальцы сети меняют направление и располагаются поперечно, образуя расширенные терминальные или (латеральные) L-цистерны.С поверхности миосимпласта плазмолемма образует длинные трубочки, идущие поперечно в глубину клетки (Т-трубочки) на уровне границ между темными и светлыми дисками. Когда клетка получает сигнал о начале сокращения, этот сигнал перемещается по плазмолемме в виде потенциала действия и распространяется отсюда на мембрану Т-трубочек. Поскольку эта мембрана сближена с мембранами саркоплазматической сети, состояние последних меняется, кальций освобождается из цистерн сети и взаимодействует с актино-миозиновыми комплексами (они сокращаются). Когда потенциал действия исчезает, кальций снова аккумулируется в цистернах саркоплазматического ретикулума и сокращение миофибрилл прекращается. Для развития усилия сокращения нужна энергия. Она освобождается за счет АТФ- АДФ-превращений. Роль АТФазы выполняет миозин. Источником АТФ служат главным образом митохондрии, поэтому они и располагаются непосредственно между миофибриллами.Большую роль в деятельности миосимпластов играют включения миоглобина и гликогена. Гликоген служит источником энергии, необходимой не только для совершения мышечной работы, но и поддержания теплового баланса всего организма. Миоглобин связывает кислород, когда мышца расслаблена и через мелкие кровеносные сосуды свободно протекает кровь. Во время сокращения мышцы сосуды сдавливаются, а запасенный кислород освобождается из миоглобина и участвует в биохимических реакциях.

1)Методы исследования живых клеток и тканей. ) Микроскопический. Кроме обычного светового микроскопа, в гистологии используются микроскопы спец. назначения: фазово-контрастные; интерференционные; микроскопы с конденсором темного поля; флуоресцентные; поляризационные. Фазово-контрастные и интерференционные микроскопы с конденсором темного поля служат для исследования неокрашенных клеток и тканей. Люминесцентные  используются для исследования естественной и искусственной люминесценции клеток и тканей.Поляризационные  предназначены для исследования ультраструктуры клеток, имеющих закономерные, регулярные структуры. Электронные и растровые используются для исследования ультраструктуры клеток. Стереосканные микроскопы дают объемное изображение объекта исследования. 2) Метод окрашивания. Для исследования объектов в лучах проходящего света необходимо, чтобы они были тонкими, прозрачными и контрастными. Для того чтобы сделать объект тонким, его необходимо разрезать на тончайшие пластинки, которые называются гистологическими срезами. Чтобы объект сохранил по возможности прижизненное строение, его фиксируют, а для того, чтобы сделать его контрастным, используют данный метод. 3) Метод изготовления временных препаратов. Преимуществом временных препаратов является быстрота их изготовления и возможность наблюдать живые клетки и ткани. Временные препараты делают из мазков, соскобов, тонких пленок, расщепленных объектов или путем растягивания стенок полых органов. Объекты рассматривают в капле воды или физиол-го раствора, либо подкрашивая их слабыми растворами витальных красителей.

3) Методы микроскопирования гистологических препаратов. Световая микроскопия. Для изучения микрообъектов применяются обычные световые микроскопы, в которых используются источники света с различными длинами волн. В обычных световых микроскопах источником освещения служит естественный или искусственный свет. Минимальная длина волны видимой части спектра 0,4 мкм. Таким образом, в световом микроскопе можно видеть не только отдельные клетки от 4 до 150 мкм, но и их внутренние структуры – органеллы, включения. Для усиления контрастности микрообъектов применяют их окрашивание. Ультрафиолетовая микроскопия. – разновидность световой микроскопии. В ультрафиолетовом микроскопе используются более короткие ультрафиолетовые лучи с длиной волны около 0,2 мкм. Разрешаемое расстояние здесь приблиз. 0,1 мкм. Полученное в ультрафиолетовых лучах невидимое изображение преобразуется в видимое с помощью регистрации на фотопластинке. Флюоресцентная микроскопия. Явление флюоресцентности заключаются в том, что атомы и молекулы ряда веществ, поглощая коротковолновые лучи, переходят в возбужденное состояние. Обратный переход в нормальное состояние происходит с испусканием света, но с большей длиной волны. В качестве источников света для возбуждения флюоресценции применяют ртутные или ксеноновые лампы сверхвысокого давления, обладающие высокой яркостью в области спектра 0,25-0,4 мкм (ближние ультрафиолетовые лучи) и 0,4-0,5 мкм (сине-фиолетовые лучи).Электронна микроскопия, Методы сверхвысоковольтной микроскопии, Рентгеноструктурный анализ.

17) Рыхлая волокнистая ткань. Входит в состав кожи, сопрровождает все кровеносные сосуды, лимфатические сосуды, нервы и входит в состав внутренних органов.Она отличается разнообразием клеточного состава, большим объёмом межклеточного вещества. Основное вещество полужидкое, студенистое, слабо минерализованное и в нём находятся волокнистые структуры..Основные функции: трофическая, защитная и она отличается наибольшей способностью к регенерации. Среди клеток преобладают фибробласты. Это крупные клетки, в них крупное овальное ядро, широкая цитоплазма, в которой находятся канальцы гранулярной эндоплазматической сети. Ведущей является белоксинтезирующая функция. Они вырабатывают межклеточное вещество (гликопротеины, протеогликаны, коллагеновые и эластиновые волокна). За счёт фибробластов идёт быстрая регенерация рыхлой соединительной ткани. Функция фибробластов регулируется гормонами надпочечников [минералокортикоиды клубочковой зоны коры надпочечников усиливают коллагенообразование, а глюкокортикоиды пучковой зоны – ослабляют]. Фибробласты со временем превращаются в фиброциты – это мелкие клетки веретеновидной формы с мелким плотным ядром. Макрофаги по размерам меньше фибробластов, у них базофильное округлое ядро, чёткие гранулы, цитоплазма образует выросты, в момент фагоцитоза хорошо развит лизосомальный аппарат. Они фагоцитируют (захватывают) чужеродные клетки, микроорганизмы, антигенные структуры, переваривают их внутри. Они участвуют в специфической иммунной защите. Макрофаги способны синтезировать и секретировать в окружающую ткань пирогены, лизоцим, интерлейкин I и др. Среди клеток рыхлой соединительной ткани выделяют плазматические клетки.Мелкие, округлой или овальной формы, резко базофильное экцентрично расположенное ядро, у них сильно развита гранулярная эндоплазматическая сеть, перед ядром более светлый участок – пластинчатый комплекс. Эти клетки вырабатывают иммуноглобулины (антитела).Рядом с кровеносными капиллярами располагаются базофильные или тучные клетки, лаброциты. Они развиваются из базофилов крови. Это крупные клетки, цитоплазма заполнена большим числом базофильных гранул, которые содержат биологически активные вещества – гепарин, гистамин. Среди клеток рыхлой соединительной ткани встречаются жировые клетки (липоциты). Они располагаются одиночно или небольшими скоплениями, шаровидные, в цитоплазме содержат крупную жировую каплю, а ядро и органеллы смещены на периферию. Также содержатся пигментные клетки или пигментоциты. Это отросчатые клетки с большим количеством пигмента, развивающиеся из нервного гребешка (эктодермы). Адвентициальные клетки. Они идут по ходу капилляров, веретеновидной формы, это стволовые клетки. Они лежат в складках базальной мембраны.В межклеточном веществе по объёму преобладает основное вещество, оно студенистое, полужидкое, в нём мало минеральных веществ, очень много воды, немного органических соединений, среди которых практически отсутствуют липиды, а преобладают гликопротеины..В основном веществе рыхло, беспорядочно располагаются волокна. Среди волокон выделяют коллагеновые волокна – широкие, лентовидные, извитые. Они построены из белка коллагена. Основу коллагена составляют три полипептидных цепочки из аминокислот. Аминокислоты располагаются строго последовательно и определяют прочность волокна, его поперечную исчерченность и тип коллагенового волокна. Известно 12 типов коллагена. Они нерастяжимы, но их способность растягиваться усиливается в водной среде, особенно в слабокислых и слабощелочных растворах. Коллагеновые волокна определяют прочность ткани.Эластические волокна – тонкие разветвлённые волокна, растяжимы, эластичны, но менее прочны. Основа – белок эластин, молекулы которого в волокне располагаются хаотично.Ретикулярные волокна. Основа – белок коллаген, снаружи покрыты углеводной плёнкой; тоньше, чем коллагеновые и разветвлённые, создаётся трёхмерная сеть. Входит в состав многих органов, но особенно много в органах кроветворения (в селезенке, лимфоузлах)

18) Плотная волокнистая ткань. Плотная неоформленная соединительная ткань характеризуется неупорядоченным расположением волокон (как, например, в нижних слоях кожи). В плотной оформленной соединительной ткани расположение волокон строго упорядочено и в каждом случае соответствует тем условиям, в каких функционирует данный орган. Оформленная волокнистая соединительная ткань встречается в сухожилиях и связках, в фиброзных мембранах. Фиброзные мембраныК этой разновидности плотной волокнистой соединительной ткани относят фасции, апоневрозы, сухожильные центры диафрагмы, капсулы некоторых органов, твердую мозговую оболочку, склеру, надхрящницу, надкостницу, а также белочную оболочку яичника и яичка и др. Фиброзные мембраны трудно растяжимы из-за того, что пучки коллагеновых волокон и лежащие между ними фибробласты и фиброциты располагаются в определенном порядке в несколько слоев друг над другом. В каждом слое волнообразно изогнутые пучки коллагеновых волокон идут параллельно друг другу в одном направлении, не совпадающем с направлением в соседних слоях. Отдельные пучки волокон переходят из одного слоя в другой, связывая их между собой. Кроме пучков коллагеновых волокон, в фиброзных мембранах есть эластические волокна. Такие фиброзные структуры, как надкостница, склера, белочная оболочка яичка, капсулы суставов и др., характеризуются менее правильным расположением пучков коллагеновых волокон и большим количеством эластических волокон по сравнению с апоневрозами.

19) Соед. ткани со спец. свойствами. Жировая ткань. К соединительным тканям со специальными свойствами относят ретикулярную, жировую и слизистую. Они характеризуются преобладанием однородных клеток. Жировая тканьЖировая ткань — это скопления жировых клеток, встречающихся во многих органах. Различают две разновидности жировой ткани — белую и бурую .Белая жировая ткань у человека располагается под кожей, особенно в нижней части брюшной стенки, на ягодицах и бедрах, где она образует подкожный жировой слой, а также в сальнике, брыжейке и забрюшинном пространстве. Жировая ткань делится прослойками рыхлой волокнистой соединительной ткани на дольки различных размеров и формы. Жировые клетки внутри долек довольно близко прилегают друг к другу. между ними располагаются фибробласты, лимфоидные элементы, тканевые базофилы. Между жировыми клетками ориентированы тонкие коллагеновые волокна. В жировой ткани происходят активные процессы обмена жирных кислот, углеводов и образование жира из углеводов. При распаде жиров высвобождается большое количество воды и выделяется энергия. Поэтому жировая ткань играет не только роль депо субстратов для синтеза макроэргических соединений, но и косвенно — роль депо воды.Во время голодания подкожная и околопочечная жировая ткань, а также жировая ткань сальника и брыжейки быстро теряют запасы жира. Капельки липидов внутри клеток измельчаются, и жировые клетки приобретают звездчатую или веретеновидную форму. В области орбиты глаз, в коже ладоней и подошв жировая ткань теряет лишь небольшое количество липидов даже во время продолжительного голодания. Здесь жировая ткань играет преимущественно механическую, а не обменную роль. В этих местах она разделена на мелкие дольки, окруженные соединительнотканными волокнами.Бурая жировая ткань встречается у новорожденных детей и у некоторых животных на шее, около лопаток, за грудиной, вдоль позвоночника, под кожей и между мышцами. Она состоит из жировых клеток, густо оплетенных гемокапиллярами. Эти клетки принимают участие в процессах теплопродукции. Адипоциты бурой жировой ткани имеют множество мелких жировых включений в цитоплазме. По сравнению с клетками белой жировой ткани в них значительно больше митохондрий. Бурый цвет жировым клеткам придают железосодержащие пигменты — цитохромы митохондрий. Окислительная способность бурых жировых клеток примерно в 20 раз выше белых и почти в 2 раза превышает окислительную способность мышцы сердца. При понижении температуры окружающей среды повышается активность окислительных процессов в бурой жировой ткани. При этом выделяется тепловая энергия, обогревающая кровь в кровеносных капиллярах.

.

20) Скелетные ткани.Хрящевая ткань) скелетные ткани- это разновидность соед. тканей с выраженной опорной, механической ф-цией, обусловленной наличием плотного межклеточного ве-ва: хрящевые , костные, дентин, цемент зуба. Принимают участие вводно-солевом обмене веществ. Хрящевая.Они выполняют механическую, опорную, защитную функции. В них упругое плотное межклеточное вещество. Содержание воды до 70-80%, минеральных веществ до 4-7%, органические вещества составляют до 10-15%, и в них преобладают белки, углеводы и крайне мало липидов. В них выделяются клетки и межклеточное вещество. Клеточный состав всех разновидностей хрящевых тканей одинаковый и включает хондробласты – малодифференцированные, уплощённые клетки с базофильной цитоплазмой, они способны пролиферировать и вырабатывать межклеточное вещество. Хондробласты дифференцируются в молодые хондроциты, приобретают овальную форму. Они сохраняют способность к пролиферации и выработке межклеточного вещества. Затем малые дифференцируются в более крупные, округлые зрелые хондроциты. Они утрачивают способность к пролиферации и выработке межклеточного вещества. Зрелые хондроциты в глубине хряща скапливаются в одной полости и называются изогенными группами клеток. Отличаются хрящевые ткани строением межклеточного вещества и волокнистыми структурами. Различают гиалиновую, эластическую и волокнистую хрящевые ткани. Они участвуют в образовании хрящей .Гиалиновый хрящ выстилает суставные поверхности, находится в зоне соединения рёбер с грудиной и в стенке воздухоносных путей. Снаружи покрыт надхрящницей – перихондрий, который содержит кровеносные сосуды. Её периферическая часть состоит из более плотной соединительной ткани, а внутренняя часть из рыхлой, содержит фибробласты и хондробласты. Хондробласты вырабатывают и выделяют межклеточное вещество и обусловливают аппозиционный рост хряща. В периферической части собственно хряща находятся молодые хондроциты. В средней части хряща находятся зрелые хондроциты и изогенные группы клеток. Между клетками располагается межклеточное вещество. Оно содержит основное вещество и коллагеновые волокна. Сосуды отсутствуют, питается он диффузно из сосудов надкостницы. В молодом хряще межклеточное вещество оксифильное, постепенно становится базофильным. С возрастом, начиная с центральной части, в нём откладываются соли кальция, хрящ обызвествляется, становится хрупким, ломким.Эластический хрящ – образует основу ушной раковины, в стенке воздухоносных путей. Он аналогичен по строению гиалиновому хрящу, но содержит не коллагеновые, а эластические волокна, и в норме он никогда не обызвествляется. Волокнистый хрящ – он находится в зоне перехода связок, сухожилий с костной тканью, в участке, где кости покрыты гиалиновым хрящом и в зоне межпозвоночных соединений. В нем грубые пучки коллагеновых волокон идут продольно оси натяжения, являясь продолжением сухожильных нитей. Волокнистый хрящ в области прикрепления к кости больше похож на гиалиновый хрящ, а в области перехода в сухожилие – на сухожилие.регенерация Физиологическая регенерация хрящевой ткани осуществляется за счет малоспециализированных клеток надхрящницы и хряща путем размножения и дифференцировки прехондробластов и хондробластов. Этот процесс медленный. Возраст. изменения. по мере старения организма ослабляются процессы размножения хондробластов и молодых хондроцитов.В цитоплазме уменьш. объем аппарата гольджи. митохондрий, снижается активность ферментов.Часть лакун после гибели хондроцтов заполняется аморфным веществом и коллагеновыми фибриллами.Местами в межклеточном веществе обнаруживаютя отложения солей кальция и поэтому хрящ становится мутным, приобретает твердость и ломкость .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]