Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник Пальчун.doc
Скачиваний:
2591
Добавлен:
09.12.2013
Размер:
15.27 Mб
Скачать

4.4. Клиническая физиология уха

I

Клиническая физиология уха складывается из слуховой и вес­тибулярной рецепции.

4.4.1. Функция органа слуха

Слуховая рецепция — сложный процесс, включающий функции звукопроведения и звуковосприятия. Для наиболее полного освещения функции слухового аппарата необходимо представить основные акустические характеристики.

Основные физические понятия акустики. В физическом по­нимании звук представляет собой механические колебания твердой, жидкой или газообразной среды, источником кото­рых может быть любой процесс, вызывающий местное изме­нение давления или механическое напряжение в среде. С фи­зиологической точки зрения под звуком понимают такие ме­ханические колебания, которые, воздействуя на слуховой ре­цептор, вызывают в нем определенный физиологический про­цесс, воспринимаемый как ощущение звука. Распространение звуковых волн в разных средах зависит от скорости звука и плотности среды, произведение которых используют для обо­значения акустического сопротивления, или импеданса, среды. Скорость распространения звуковых колебаний в воз­духе составляет 332 м/с, в воде — 1450 м/с.

Колебания звучащего тела можно представить как маятни- кообразные. Время, в течение которого совершается одно пол­ное колебание, называется периодом колебания. При маятни- кообразных колебаниях в воздушной среде образуются участ­ки сгущения (уплотнения) среды, чередующиеся с участками разрежения. В результате попеременного образования участ­ков сгущения и разрежения возникает звуковая волна. Разли­чают поперечные волны — в твердых телах и продольные — в воздухе и жидких средах. Одинаковые состояния звуковой волны — участки сгущения или разрежения — называются фа­зами. Расстояние между одинаковыми фазами называют дли­ной волны. Низкие звуки, при которых фазы отстоят далеко друг от друга, характеризуются большой длиной волны, высо­кие звуки с близким расположением фаз — небольшой (корот­кой).

Фаза и длина волны имеют важное значение в физиологии слуха. Так, одним из условий оптимального слуха является приход звуковой волны к окнам преддверия и улитки в разных фазах (анатомически это обеспечивается звукопроводящей системой среднего уха). Высокие звуки с небольшой длиной волны вызывают колебания невысокого столба лабиринтной жидкости (перилимфы) в основании улитки, низкие, с боль­шей длиной волны, распространяются до ее верхушки. Это об­стоятельство важно для уяснения современных теорий слуха.

К физическим характеристикам звука относятся также час­тота и амплитуда звуковых колебаний. Единицей измерения частоты колебаний является 1 герц (Гц), обозначающий число колебаний в секунду. Амплитуда колебаний — расстояние между средним и крайним положениями колеблющегося тела. Амплитуда колебаний (интенсивность) звучащего тела в зна­чительной степени определяет восприятие звука.

По характеру колебательных движений звуки делятся на три группы: чистые тоны, сложные тоны и шумы. Гармоничес­кие (ритмичные) синусоидальные колебания создают чистый, простой звуковой тон (т.е. звучит тон одной частоты), напри­мер звук камертона. Негармонический звук, отличающийся от простых тональных звуков сложной структурой, называется шумом. Шумовой спектр состоит из разнообразных колеба­ний, частоты которых относятся к частоте основного тона хао­тично, как различные дробные числа. Восприятие шума часто сопровождается неприятными субъективными ощущениями. Сложные тоны характеризуются упорядоченным отношением их частот к частоте основного тона, а ухо имеет способность анализировать сложный звук. Вообще каждый сложный звук разлагается ухом на простые синусоидальные составляющие (закон Ома), т.е. происходит то, что в физике обозначают тер­мином «теорема (ряд) Фурье».

Способность звуковой волны огибать препятствия называ­ется дифракцией. Низкие звуки с большой длиной волны обла­дают лучшей дифракцией, чем высокие с короткой волной. Явление отражения звуковой волны от встречающихся на ее пути препятствий называется эхом. Многократное отражение звука в закрытых помещениях от различных предметов носит название «реверберация». При хорошей звукоизоляции поме­щений реверберация слабая, например в театре, кинозале и т.д., при плохой — сильная. Явление наложения отраженной звуковой волны на первичную звуковую волну получило на­звание «интерференция». При этом явлении может наблюдать­ся усиление или ослабление звуковых волн. При прохождении звука через наружный слуховой проход осуществляется его интерференция и звуковая волна усиливается.

Важное значение в звукопроведении играет явление резо­нанса, при котором звуковая волна одного колеблющегося предмета вызывает соколебательные движения другого (резо­натор). Резонанс может быть острым, если собственный пе­риод колебаний резонатора совпадает с периодом воздейст­вующей силы, и тупым, если периоды колебаний не совпада­ют. При остром резонансе колебания затухают медленно, при тупом — быстро. Важно отметить, что колебания структур уха, проводящих звуки, затухают быстро; это устраняет искажение внешнего звука, поэтому человек может быстро и последова­тельно принимать все новые и новые звуковые сигналы. Неко­торые структуры улитки обладают острым резонансом, что способствует различению двух близкорасположенных частот.

Основные свойства слухового анализатора. К основным свойствам слухового анализатора относится его способность различать высоту (понятие частоты) звука, его громкость (по­нятие интенсивности) и тембр, включающий основной тон и обертоны.

Как принято в классической физиологической акустике, ухо человека воспринимает полосу звуковых частот от 16 до 20 ООО Гц (от 12-24 до 18 000-24 ООО Гц). Чем выше амплиту- да звука, тем лучше слышимость. Однако до известного преде­ла, за которым начинается звуковая перегрузка. Колебания с частотой менее 16 Гц называются инфразвуком, а выше верх­ней границы слухового восприятия (т.е. более 20 ООО Гц) — ультразвуком. В обычных условиях ухо человека не улавливает инфра- и ультразвук, но при специальном исследовании эти частоты также воспринимаются.

Область звукового восприятия у человека ограничена зву­ками, расположенными в диапазоне между 16 колебаниями в секунду (нижняя граница) и 20 ООО (верхняя граница), что со­ставляет 10,5 октавы. Звук частотой 16 Гц обозначается С2 — субконтроктава, 32 Гц — С, (контроктава), 64 Гц — С (боль­шая октава), 128 Гц — с (малая октава), 256 Гц — сь 512 Гц — с2, 1024 Гц - с3, 2048 Гц - с4, 4096 Гц - с5 и т.д.

С возрастом слух постепенно ухудшается, смещается в сто­рону восприятия низких частот и зону наибольшей чувстви­тельности. Так, если в возрасте 20—40 лет она находится в об­ласти 3000 Гц, то в возрасте 60 лет и более смещается в об­ласть 1000 Гц. Верхняя и нижняя границы слуха могут изме­няться при заболеваниях органа слуха, в результате чего сужи­вается область слухового восприятия. У детей верхняя граница звуковосприятия достигает 22 000 Гц, у пожилых людей она ниже и обычно не превышает 10 000—15 000 Гц. У всех млеко­питающих верхняя граница выше, чем у человека: например, у собак она достигает 38 ООО Гц, у кошек — 70 000 Гц, у летучих мышей — 200 000 Гц и более. Как показали исследования, проведенные в нашей стране, человек способен воспринимать ультразвуки частотой до 200—225 кГц, но только при его кост­ном проведении. В аналогичных условиях расширяется диа­пазон воспринимаемых частот и у млекопитающих [Сагало- вич Б.М., 1962].

Весь диапазон воспринимаемых ухом человека частот де­лят на несколько частей: тоны до 500 Гц называются низкочас­тотными, от 500 до 3000 Гц — среднечастотными, от 3000 до 8000 Гц — высокочастотными. Различные части диапазона воспринимаются ухом неодинаково. Оно наиболее чувстви­тельно к звукам, находящимся в зоне 1000—4000 Гц, имеющей значение для восприятия человеческого голоса. Чувствитель­ность (возбудимость) уха к частотам ниже 1000 и выше 4000 Гц значительно понижается. Так, для частоты 10 000 Гц интен­сивность порогового звука в 1000 раз больше, чем для опти­мальной зоны чувствительности в 1000—4000 Гц. Различная чувствительность к звукам низкой и высокой частоты во мно­гом объясняется резонансными свойствами наружного слухово­го прохода. Определенную роль играют также соответствующие свойства чувствительных клеток отдельных завитков улитки.

Минимальная энергия звуковых колебаний, способная вы­звать ощущение звука, называется порогом слухового воспри- ятия. Порог слухового ощущения определяет чувствитель­ность уха: чем выше порог, тем ниже чувствительность, и на­оборот. Следует различать интенсивность звука — физическое понятие его силы и громкость — субъективную оценку силы звука. Звук одной и той же интенсивности люди с нормаль­ным и пониженным слухом воспринимают как звук разной громкости.

Интенсивность звука, т.е. средняя энергия, переносимая звуковой волной к единице поверхности, измеряется в ваттах на 1 см2 (1 Вт/см2). Звуковое давление, возникающее при про­хождении звуковой волны в газообразной или жидкой среде, выражается в микробарах (мкбар): 1 мкбар равен давлению в 1 дину на площади 1 см2, что соответствует одной миллионной доле атмосферного давления. Порог восприятия звукового давления у человека равен 0,0002 мкбар, или 10~9 эрг, а макси­мальный порог переносимого давления — 104 эрг, т.е. разница между минимальной и максимальной чувствительностью равна 1013 эрг и измеряется миллиардными величинами. Изме­рение слуха такими многоцифровыми единицами представля­ется крайне неудобным, поэтому единицей измерения уровня громкости звука, степени усиления (или ослабления) его явля­ется децибел (дБ). В современной аудиологии величину порога слышимости принято выражать в Па (паскалях): она составля­ет 2-1 б"5 Па, или 20 мнПа. 1 Па равен 1 н/м2 (н — ньютон).

Единица измерения «бел», названная в честь изобретателя телефона Бела, обозначает отношение силы исследуемого звука к ее пороговому уровню, децибел — 0,1 десятичного ло­гарифма этой величины. Введение такой единицы для акусти­ческих измерений дало возможность выразить интенсивность всех звуков, находящихся в области слухового восприятия, в относительных единицах от 0 до 140 дБ. Сила шепотной речи составляет примерно 30 дБ, разговорной — 40—60 дБ, улич­ного шума — 70 дБ, громкой речи — 80 дБ, крик около уха — 110 дБ, шума реактивного двигателя — 120 дБ. Максимальным порогом силы звука для человека является 120—130 дБ; звук такой силы вызывает боль в ушах.

Слуховой анализатор обладает высокой различительной способностью. Область восприятия различий по частоте ха­рактеризуется разностным (дифференциальным) порогом час­тоты звука, иными словами, тем минимальным изменением частоты, которое может быть воспринято при сравнении двух различаемых частот. В диапазоне тонов от 500 до 5000 Гц ухо различает изменение частоты в пределах 0,003 %, в диапазоне 50 Гц различительная способность находится в пределах 0,01 %.

Слуховой анализатор способен дифференцировать звуки и по силе, т.е. различать появление новой, большей (или мень­шей) интенсивности звука. Дифференциальный порог силы зву- ка (ДП) будет большим в зоне низких частот и менее значи­тельным в речевой зоне частот, где он равен в среднем 0,8 дБ.

Важной особенностью уха является способность к анализу сложных звуков. Звучащее тело, например струна, колеблется не только целиком, давая основной тон, но и своими частями (половиной, четвертью и т.д.), колебания которых дают обер­тоны (гармоники), что вместе с основным тоном составляет тембр. Все окружающие нас природные звуки содержат ряд обертонов, или гармоник, которые придают звуку определен­ную окраску — тембр. Звуки различных музыкальных инстру­ментов одинаковой силы и высоты отличаются величиной, числом и качеством обертонов и легко распознаются ухом. Лишь некоторые деревянные музыкальные инструменты спо­собны синтезировать чистый тон. В природе чистые тона также встречаются крайне редко (пение двух видов птиц).

Люди с музыкальным, или абсолютным, слухом обладают наиболее выраженной способностью производить анализ час­тоты звука, выделяя его составные обертоны, отличая две рядом расположенные ноты, тон от полутона. В основе музы­кального слуха лежат тонкое распознавание частотных интер­валов и музыкальная (звуковая) память.

Одной из особенностей слухового анализатора является его способность при постороннем шуме воспринимать одни звуки хуже, чем другие. Такое взаимное заглушение одного звука другим получило название «маскировка». Звук, который заглу­шает другой, называется маскирующим, звук, который заглу­шают, — маскируемым. Это явление нашло широкое приме­нение в аудиологии, когда при исследовании одного уха мас­кирующий тон подают на другое с целью его заглушения. Сле­дует иметь в виду, что обычно низкие тона обладают повы­шенной способностью маскировать более высокие тона.

Физиологическое приспособление органа слуха к силе зву­кового раздражителя называют адаптацией. Она выра­жается в том, что воздействие звука на слуховой анализатор приводит к понижению его чувствительности в тем большей степени, чем сильнее звук. Это создает оптимальный настрой анализатора на восприятие звука данной силы и частоты. Вы­ключение звукового раздражителя сопровождается, как прави­ло, быстрым восстановлением чувствительности слухового анализатора. Адаптация происходит не только к звуку, но и к тишине-, при этом чувствительность анализатора обостряется, он готовится (настраивается) воспринять звуки наименьшей силы. Адаптация также играет роль защиты от сильных и про­должительных звуков. У разных людей адаптация имеет инди­видуальные особенности, как и восстановление чувствитель­ности. Процессы адаптации протекают по-разному при болез­нях уха, и изучение их имеет значение в дифференциальной диагностике.

От адаптации следует отличать утомление слухо­вого анализатора, которое возникает при его перераз­дражении и медленно восстанавливается. Этот процесс в от­личие от адаптации всегда приводит к снижению работоспо­собности органа слуха. После отдыха явления утомления про­ходят, однако при частых и длительных воздействиях звуков и шума значительной интенсивности развиваются стойкие нару­шения слуховой функции. Заболевания уха предрасполагают к более быстрому развитию утомления слуха.

Важным свойством слухового анализатора является его спо­собность определять направление звука — ото- топика. Установлено, что ототопика возможна только при наличии двух слышащих ушей, т.е. при бинауральном слухе. Определение направления звука обеспечивается следующими условиями: 1) разницей в силе звука, воспринимаемой ушами, поскольку ухо, которое находится ближе к источнику звука, воспринимает его более громким. Здесь имеет значе­ние и то обстоятельство, что одно ухо оказывается в звуко­вой тени; 2) способностью различать минимальные промеж­утки времени между поступлением звука к одному и другому уху. У человека порог этой способности равен 0,063 мс. Спо­собность локализовать направление звука пропадает, если длина звуковой волны меньше двойного расстояния между ушами, которое равно в среднем 21 см, поэтому ототопика высоких звуков затруднена. Чем больше расстояние между приемниками звука, тем точнее определение его направле­ния; 3) способностью воспринимать разность фаз звуковых волн, поступающих в оба уха. В последние годы установлена возможность вертикальной ототопики, осуществляемой од­ним ухом (Б.М.Сагалович и соавт.). Ее острота несколько ниже бинауральной горизонтальной ототопики, она во мно­гом зависит от частоты звука, сочетания различных высоких частот и имеет закономерности как в норме, так и в пато­логии.

Функции наружного, среднего и внутреннего уха, звукопро- ведение и звуковосприятие. Периферический отдел слухового анализатора выполняет две основные функции: звукопроведе- ние — доставка звуковой энергии к рецепторному аппарату (преимущественно механическая, или физическая, функция) и звуковосприятие — превращение (трансформация) физичес­кой энергии звуковых колебаний в нервное возбуждение. Со­ответственно этим функциям различают звукопроводящий и звуковоспринимающий аппараты.

Звукопроведение. В выполнении этой функции участвуют ушная раковина, наружный слуховой проход, бара­банная перепонка, цепь слуховых косточек, мембрана окна улитки, перилимфа, базилярная пластинка и преддверная (рейсснерова) мембрана.

Звуковая волна, как уже отмечалось, является двойным ко­лебанием среды, в котором различают фазу повышения и фазу понижения давления. Продольные звуковые колебания посту­пают в наружный слуховой проход, достигают барабанной перепонки и вызывают ее колебания. В фазе повышения (сгу­щения) давления барабанная перепонка вместе с рукояткой молоточка двигается кнутри. При этом тело наковальни, со­единенное с головкой молоточка, благодаря подвешивающим связкам смещается кнаружи, а длинный отросток наковаль­ни — кнутри, смещая таким образом кнутри и стремя. Вдавли­ваясь в окно преддверия, стремя толчкообразно приводит к смещению перилимфы преддверия. Дальнейшее распростра­нение звуковой волны возможно лишь по лестнице преддверия, где колебательные движения передаются преддверной (рейсс- неровой) мембране, а та в свою очередь приводит в движение эндолимфу и базилярную пластинку, а затем перилимфу бара­банной лестницы и вторичную мембрану окна улитки. При каждом движении стремени в сторону преддверия перилимфа в конечном итоге вызывает смещение мембраны окна улитки в сторону барабанной полости. В фазе снижения давления передающая система возвращается в исходное положение.

Воздушный путь доставки звуков во внутреннее ухо являет­ся основным. Другой путь проведения звуков к спиральному органу — костная (тканевая) проводимость. Примером может служить простой опыт. Если герметично закрыть уши, воспри­ятие громких звуков сохранится. В этом случае вступает в дей­ствие механизм, при котором звуковые колебания воздуха по­падают на кости черепа, распространяются в них и доходят до улитки. Однако механизм передачи звука до спирального орга­на через кость имеет двоякий характер. В одном случае коле­бание основной мембраны и, следовательно, возбуждение спирального органа происходит таким же образом, как и при воздушном проведении, т.е. звуковая волна в виде двух фаз, распространяясь по кости до жидких сред внутреннего уха, в фазе давления будет выпячивать мембрану окна улитки и в меньшей степени основание стремени (учитывая практичес­кую несжимаемость жидкости). Одновременно с таким ком­прессионным механизмом может наблюдаться другой, инер­ционный, при котором учитываются не только различия в массе и плотности слуховых косточек и жидких сред внутрен­него уха по отношению к черепу, но также свободное соедине­ние этих косточек с костями черепа. В этом случае при прове­дении звука через кость колебание звукопроводящей системы не будет совпадать с колебаниями костей черепа, следователь­но, базилярная и преддверная мембраны будут колебаться и возбуждать спиральный орган обычным путем. Колебание костей черепа можно вызвать прикосновением к нему звуча­щего камертона или костного телефона аудиометра. Таким об- разом, при нарушении передачи звука через воздух костный путь его проведения приобретает большое значение. Инерци­онный механизм характерен для передачи низких частот, ком­прессионный — высоких.

Функции отдельных элементов органа слуха в проведении звуков различны.

Ушная раковина. Роль ушных раковин в физиоло­гии слуха человека изучена достаточно детально. Они имеют определенное значение в ототопике. В частности, при измене­нии положения ушных раковин вертикальная ототопика иска­жается, а при выключении их путем введения в слуховые про­ходы полых трубок полностью исчезает. Наряду с этим ушные раковины играют роль коллектора для высоких частот, отра­жая их от разных завитков к слуховому проходу.

Наружный слуховой проход. По форме он представляет собой трубку, благодаря чему является хорошим проводником звуков в глубину (чему способствует и покрытие стенок прохода ушной серой). Ширина и форма слухового прохода не играют особой роли при звукопроведении. Вместе с тем полное заращение просвета слухового прохода или меха­ническая закупорка его препятствуют распространению звуко­вых волн к барабанной перепонке и приводят к заметному ухудшению слуха. Кроме того, форма слухового прохода и вы­сокая чувствительность его кожи способствуют предотвраще­нию травм органа слуха. В частности, в слуховом проходе вблизи барабанной перепонки поддерживается постоянный уровень температуры и влажности независимо от колебаний температуры и влажности внешней среды, что обеспечивает стабильность упругих свойств барабанной перепонки. Однако главное заключается в том, что резонансная частота слухового прохода при длине 2,7 см составляет примерно 2—3 кГц и бла­годаря этому именно указанные частоты поступают к барабан­ной перепонке усиленными на 10—12 дБ.

Полость среднего уха. Важным условием пра­вильной работы звукопроводящей системы является наличие одинакового давления по обе стороны барабанной перепонки. При повышении или понижении давления как в полости сред­него уха, так и в наружном слуховом проходе натяжение бара­банной перепонки меняется, акустическое (звуковое) сопро­тивление повышается и слух понижается. Выравнивание дав­ления по обе стороны барабанной перепонки обеспечивается вентиляционной функцией слуховой трубы. При глотании или зевании слуховая труба открывается и становится проходимой для воздуха. Поскольку слизистая оболочка среднего уха посте­пенно всасывает воздух, нарушение вентиляционной функции слуховой трубы приводит к тому, что наружное давление пре­вышает давление в среднем ухе, в результате чего происходит втяжение барабанной перепонки внутрь. В связи с этим нару

-

3,2 см2

5 см2

1 i "

10 см2

Отношение 5:1