Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Gidrodinamika-Ch1_38s.doc
Скачиваний:
164
Добавлен:
12.01.2016
Размер:
1.58 Mб
Скачать

Береда н.Н. Введение. Определения курса

Гидрогазодинамика (ГГД) является частью общего курса «Механика жидкости и газа (МЖГ)». В курсе МЖГ изучается законы покоящейся и движущейся жидкости, ее взаимодействие с твердым телом и разрабатываются способы применения этих законов в технике.

Тема I. Основы гидростатики

I.1. Физические свойства жидкостей

Жидкостями называют физические тела, которые в отличие от твердых тел обладают текучестью. Будучи помещены в сосуд, жидкости принимают его форму. При этом жидкости могут быть капельными (несжимаемыми) и газообразными (сжимаемыми). Капельные жидкости почти не меняют объема при изменении давления (например, вода при возрастании давления на 1 атмосфер уменьшает объем на 1/20 000). В газах изменение давления приводит к значительным изменениям объема; например, при изотермическом увеличении давления вдвое объем газа уменьшается в 2 раза. В капельных жидкостях имеют место силы сцепления между частицами, что приводит к появлению поверхности уровня; в газах сил сцепления между молекулами нет.

В гидромеханике и газодинамике используется понятие континуума, или сплошности. Предполагается, что любая частица жидкой среды, сколь бы мала она ни была, имеет свойства, одинаковые со свойствами окружающего большого объема жидкости. В действительности континуум в жидкости часто нарушается. Например, в зоне пониженного давления в потоке жидкости может возникнуть явление кавитации, т.е. образование полостей (каверн), заполненных парами и газами, выделившимися из жидкости. Однако для большинства практических задач использование понятия сплошности является справедливым, что позволяет считать скорость течения, давление и другие параметры потока непрерывными функциями от координат. Молекулярные и внутриатомные эффекты при этом не учитываются.

Рассмотрим основные свойства жидкости.

Плотность. Это свойство характеризует инерционные качества жидкости. Плотностью ρ называют массу единицы объема жидкости. Если масса жидкости m занимает объем W, то

. (I.1)

Размерность плотности в системе СИ – кг/м3, в технической системе единиц – кгс·сек24.

В случае неоднородной жидкости плотность определяется через предельный переход

.

Наряду с плотностью часто используется (особенно в гидравлике) понятие удельного веса. Удельным весом называют вес единицы объема жидкости. Удельный вес γ равен отношению веса жидкости G к ее объему и может быть получен из плотности умножением на ускорение силы тяжести g:

. (I.2)

Размерность удельного веса в системе СИ – н/м3, в технической системе единиц –кгс/м3.

В технической термодинамике и в некоторых разделах газодинамики в качестве величины, характеризующей плотностные качества газа, используется удельный объем w – объем, занимаемый единицей массы газа. Очевидно, что

.

Удельные веса и плотности некоторых жидкостей при температуре 20º С приведены в табл. 1.

Таблица 1

Удельный вес и плотность жидкостей

Род жидкости

γ

ρ

Техническая система кгс/м3

СИ, н/м3

Техническая система кгс·сек24

СИ, кг/м3

Бензин

740–760

7260–7450

75,4–77,4

740–760

Спирт этиловый

800

7840

81,6

800

Масло минеральное

870–900

8540–8830

88,8–91,8

870–900

Вода пресная

1000

9807

102

1000

Глицерин

1250

12 260

127,5

1250

Ртуть

13 600

133 100

1382

13 600

Воздух при нормальных условиях

1,23

12,1

0,121

1,23

Вязкость. Свойство вязкости проявляется в сопротивлении, которое оказывает движущаяся жидкость сдвигающим усилиям. Если в потоке скорости отдельных слоев неодинаковы, то молекулы жидкости в своем хаотическом тепловом движении проникают из слоев, имеющих малую скорость, в слои с большими скоростями и подтормаживают их (на рис. 1 снизу вверх). Наоборот, молекулы, поступающие в зону малых скоростей, увлекают жидкость. Таким образом, вследствие теплового движения молекул и сил сцепления между частицами жидкости возникает тенденция к выравниванию эпюры скоростей. Подтормаживание слоев с большей скоростью при этом аналогично действию трения в механике твердого тела; используя эту аналогию, действие вязкости называют внутренним трением в жидкости. Теряемая механическая энергия потока расходуется на увеличение внутренней энергии молекул, т. е. переходит в теплоту.

По гипотезе И. Ньютона (1686), подтвержденной многочисленными экспериментами, касательное усилие между слоями жидкости, имеющими разную скорость («сила трения»), пропорционально площади соприкосновения слоев F и градиенту скорости в поперечном направлении:

(закон Ньютона о вязком трении). Касательное напряжение τ, или сила трения на единицу площади соприкосновения слоев, выражается формулой

. (I.3)

Коэффициент пропорциональности μ в формуле Ньютона носит название динамического коэффициента вязкости. Его размерность в системе СИ – н·сек/м2, в технической системе единиц – кгс·сек/м2. В некоторых задачах гидромеханики, когда вязкость мало влияет на течение, используется понятие о фиктивной жидкости, лишенной свойства вязкости – «идеальной жидкости».

Наряду с динамическим коэффициентом вязкости и. в гидромеханике часто используется также кинематический коэффициент вязкости ν, представляющий собой отношение μ к плотности жидкости ρ, т. е.

.

Размерность кинематического коэффициента вязкости – м2/сек. В практике чаще применяется производная единица – см2/сек, причем 1 см2/сек = 10-4 м2/сек. Единица см2/сек носит название стокс (cm). Ниже приведены значения кинематического коэффициента вязкости ν в стоксах для некоторых жидкостей при температуре 20º С

Ртуть………………………..

0,00111

Бензин………………………

0,0083–0,0093

Вода…………………………

0,0101

Спирт……………………….

0,0133

Масло турбинное…………..

1,32

Глицерин…………………...

4,1

Вязкость капельных жидкостей уменьшается с повышением температуры, что связано с уменьшением сил сцепления между частицами. В табл. 2 даны значения коэффициента кинематической вязкости при различной температуре для воды и турбинного масла. Вязкость газов, наоборот, увеличивается с повышением температуры из-за увеличения скоростей хаотического движения молекул.

Таблица 2

Соседние файлы в предмете Гидрогазодинамика