Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Углеводы.docx
Скачиваний:
83
Добавлен:
04.02.2016
Размер:
259.87 Кб
Скачать

Углеводы — первичные продукты фотосинтеза и основные исходные продукты биосинтеза других веществ в растениях. Составляют существенную часть пищевого рациона. Обмен углеводов — совокупность процессов превращений углеводов в организме. Углеводы, поступающие в организм с пищевыми продуктами, представлены, главным образом, крахмалом и тростниковым сахаром. Крахмал — полисахарид растений, он состоит из цепочки соединенных между собой более простых молекул — моносахаров, главным из которых является глюкоза. По своей структуре крахмал подобен гликогену. Тростниковый сахар — это углевод, который преобладает в нашем рационе. По структуре это дисахарид, т.е. он состоит из двух молекул моносахаров — глюкозы и фруктозы. Глюкоза и фруктоза могут находиться в разных пищевых продуктах и в свободном виде, например, в меде и фруктах. В молочных продуктах содержится, в основном, такой углевод, как лактоза. В организме имеется «депо» углеводов — гликоген, образованный из молекул глюкозы.

Углеводы, прежде всего, источник энергии, в меньшей степени они выполняют

пластическую функцию. Организм человека не нуждается в определенных углеводах. Единственным «незаменимым» производным углеводов, которое обязательно должно поступать с пищей, является аскорбиновая кислота или витамин С, так как у человека отсутствует один из ферментов, необходимых для его синтеза. В сбалансированной диете примерно 50% необходимой человеку энергии должно поступать с углеводами Превращения углеводов связанные с дыхание и брожением

Процесс превращения углеводов начинается с переваривания их в ротовой полости под влиянием слюны, затем некоторое время продолжается в желудке и заканчивается в тонком кишечнике — основном месте гидролиза углеводов под влиянием ферментов, содержащихся в пищеварительном соке поджелудочной железы и тонкого кишечника. Продукты гидролиза — моносахара — всасываются в кишечнике и поступают в кровь воротной вены, по которой моносахариды пищи поступают в печень, где они превращаются в глюкозу. Глюкоза далее поступает в кровь и может вступить в процессы, протекающие в клетках или переходит в гликоген печени.

Роль печени в углеводном обмене

Печень — главный орган, в клетках которого происходят биохимические превращения продуктов пищеварительного гидролиза углеводов и превращение их в глюкозу — форму, доступную для клеток организма. Печень — депо углеводов, так как часть глюкозы хранится здесь в виде гликогена. Печень поддерживает содержание глюкозы в крови на постоянном уровне — в этом состоит глюкостатическая функция печени. При избытке глюкозы в печени происходит синтез гликогена из глюкозы — гликогенез. После приема пищи богатой углеводами содержание гликогена может составлять до 8% веса печени. В среднем, запасы гликогена составляют около 5% веса печени, что у взрослого человека эквивалентно примерно 90 г глюкозы.

При повышении потребности организма в глюкозе происходит распад гликогена печени — гликогенолиз, который достаточен для удовлетворения нужд организма в первые 12-24 часа после приема пищи. Печень — один из главных органов, где происходит процесс ферментативного синтеза глюкозы из углеводных и неуглеводных продуктов — глюконеогенез. Причем клетки печени способны реагировать на возникновение потребности в глюкозе и в клетках других органов. При голодании, после истощения запасов гликогена, процессы глюконеогенеза идут с максимальной интенсивностью, поддерживая «сахар» крови на постоянном уровне. В печени также происходит  гликолиз — ферментативный распад глюкозы с освобождением энергии, заключенной в ее молекуле и переводом ее в форму, доступную для организма — т.е. в аденозинтрифосфат (АТФ).

Превращение глюкозы в клетках

В клетках глюкоза может расщепляться как анаэробно (без участия кислорода), так и аэробно (с участием кислорода). В анаэробных условиях гликолиза из каждой молекулы расщепившейся глюкозы образуются 2 молекулы аденозинтрифосфата (АТФ) и 2 молекулы молочной кислоты. При аэробном гликолизе промежуточные продукты углеводного обмена, образующиеся в процессе анаэробного распада углеводов (пировиноградная кислота), не восстанавливаются до молочной кислоты, а окисляются в митохондриях в цикле трикарбоновых кислот до углекислого газа и воды с накоплением энергии в виде АТФ. Кроме того, промежуточные продукты гликолиза являются материалом для синтеза многих важных соединений и используются организмом как еще один источник материала для процессов ассимиляции.

Регуляция содержания глюкозы в крови

О состоянии обмена углеводов можно судить по содержанию сахара в крови. У здорового человека в крови поддерживается постоянная концентрация глюкозы 70-120 мг%. После приема пищи, содержащей углеводы, концентрация глюкозы в крови возрастает примерно до 150мг % и остается на этом уровне около 2 часов, а затем возвращается к норме. Содержание глюкозы в крови — одна из самых важных констант жидкой внутренней среды организма. Ведущая роль в поддержании этой константы на постоянном уровне благодаря идущим там процессам гликогенеза и гликогенолиза принадлежит печени. Длительное повышение содержания глюкозы в крови — гипергликемия стимулирует выделение в кровь инсулина. Инсулин снижаетсодержание глюкозы в крови после возрастания ее концентрации (гипергликемии).

У здорового человека в период между приемами пищи нормальное содержание глюкозы в крови поддерживается путем распада гликогена в печени с образованием свободной глюкозы — процессом гликогенолиза. При снижении сахара крови — гипогликемии, длящейся более длительное время, в кровь поступает глюкагон — гормон, выделяемыйподжелудочной железой. Инсулин, гормон поджелудочной железы, стимулирует процессы синтеза гликогена в печени — гликогенез, поглощение глюкозы клетками других тканей организма, подавляет образование глюкозы, т.е. процессы глюконеогенеза. Инсулин — главный гормон. Этот гормон обладает специфическим действием: он действует исключительно на процессы гликогенолиза, ускоряя образование глюкозы.

При голодании, длящемся более 24 часов, запасы гликогена в печени истощаются. В прессы регуляции включаются гормоны коры надпочечника — глюкокортикоиды. Глюкокортикоиды, во-первых, усиливают глюконеогенез в печени; во-вторых, обеспечивает процессы глюконеогенеза субстратом, усиливая распад белков в тканях организма, они предоставляют для глюконеогенеза углеродсодержащий субстрат. К гормонам, которые обеспечивают повышение сахара крови, относятся адреналин и гормон роста.

Адреналин — гормон мозгового вещества надпочечника. Он усиливает процессы перехода гликогена в глюкозу. Гормон роста, во-первых, подавляет использование глюкозы клетками тканей; во-вторых, при резком и длительном снижении сахара крови стимулирует распад жиров и образование из них углеводов. Дыхание. Все живые организмы дышат, т. е. поглощают кислород и выделяют углекислый газ и воду. При этом происходит разложение органических веществ и выделение энергии, необходимой для жизни каждой клетки, всего растения. В действительности этот процесс многоступенчатый. Он состоит из целого ряда последовательно идущих окислительно-восста-новительных реакций. В качестве органических веществ, необходимых для дыхания, служат в основном углеводы, белки и жиры. Типичным соединением, окисляемым в процессе дыхания, является глюкоза. Энергетически наиболее выгодным для дыхания веществом является жир. 1 г жира при окислении до СО2 и Н2О дает 9,2 ккал, белки — 5,7 ккал, углеводы — 4 ккал. Процесс превращения исходного органического вещества до более простых и затем до СО2 и Н2О требует большого числа различных ферментов.

В процессе фотосинтеза растения синтезируют углеводы, которые транс­портируются из листьев в другие органы. На свету и в темноте клетки растения «дышат», окисляя углеводы молекулярным кислородом с образованием СО2 и воды. При этом освобождается большое количество свободной энергии: С6Н12О6 + 6О2 = 6СО2 + 6Н2О + энергия; ∆G = -2882 кДж/моль (-686 ккал/моль) Эта формула в общем виде отражает чрезвычайно сложный, а главное, кон­тролируемый процесс, который условно можно разбить на три этапа: гликолиз, цикл трикарбоновых кислот и окислительное фосфорилирование в дыхательной цепи (рис. 1).

Гликолиз и цикл трикарбоновых кислот — это биохимические пути окисле­ния глюкозы, протекающие соответственно в цитозоле и матриксе митохонд­рий. В биохимических реакциях синтезируется небольшое количество АТФ, и главный их результат — образование соединений с высоким восстановитель­ным потенциалом — НАДН и ФАДН2. На заключительном этапе восстановительные эквиваленты окисляются в электрон-транспортной цепи, локализованной во внутренней мембране митохондрий. Перенос электрона в цепи за­вершается восстановлением кислорода до воды. В процессе электронного транспорта на мембране образуется электрохимический протонный градиент ΔµἨ, энергия которого используется для синтеза АТФ из АДФ и Фн. Процесс, в котором работа дыхательной цепи сопряжена с синтезом АТФ, получил на­звание окислительного фосфорилирования. Именно в этом процессе синтезиру­ется основная масса АТФ, образуемого при дыхании. И у растений, и у животных дыхание выполняет три основные функции. Во-первых, освобождаемая при окислении углеводов энергия преобразуется в конвертируемые формы клеточной энергии — ΔµἨ и АТФ. Вторая, не менее важная функция — снабжение клетки метаболитами, которые образуются в ходе окисления глюкозы и используются в разнообразных биосинтезах. Третья функция связана с термогенезом, т. е. рассеиванием энергии в виде тепла. Про­цесс дыхания принципиально сходен у животных и растений, но у последних имеет свои особенности. Все вместе они отражают пластичность растительного метаболизма и связаны с функционированием, наряду с основными, альтер­нативных ферментов и реакций. Наличие альтернативных путей расширяет адап­тивные возможности растений, но усложняет (с точки зрения исследователя) систему регуляции метаболических процессов.

Рис. 1. Основные этапы дыхания

Окисление глюкозы в процессе гликолиза сопровождается восстановлением двух молекул НАД+, синтезом двух молекул АТФ и завершается образованием двух молекул пирувата. В митохондриях пируват подвергается полному окислению до СО2 в реакциях, катализируемых пируватдегидрогеназным комплексом (ПДК) и ферментами цикла трикарбоновых кислот (ЦТК). В этих процессах образуются 4НАДН, 1ФАДН2, а также одна молекула АТФ. Восстановительные эквива­ленты окисляются, отдавая электроны в электрон-транспортную цепь, локализованную во внутренней митохондриальной мембране. Электронный транспорт приводит к восстановлению кислорода до воды и сопряжен с синтезом основной массы АТФ в процессе окислительного фосфорилирования.

Основные события, связанные с дыханием, происходят в митохондриях. Растительные митохондрии, как правило, сферической или цилиндрической формы, их число может сильно варьировать в зависимости от метаболической активности клетки. Две мембраны, наружная и внутренняя, делят митохонд­рию на два функциональных компартмента — межмембранное пространство и матрикс (рис. 2).  Рис. 2. Структура митохондрий Особые белки, называемые поринами, образуют в наружной мембране крупные гидрофильные каналы, или поры, через которые в меж­мембранное пространство из цитозоля свободно могут проникать соединения с молекулярной массой не более 10 кДа. Это практически все основные мета­болиты клетки. Внутренняя мембрана образует многочисленные складки, кри-сты, которые увеличивают ее поверхность. Во внутреннюю мембрану интегри­рованы электрон-транспортная цепь (ЭТЦ) и АТФ-синтаза. В отличие от дру­гих клеточных мембран внутренняя мембрана митохондрий обогащена белком (75 %) и содержит особый фосфолипид (дифосфатидилглицерол) — кардиолипин. Она пропускает газы, воду и небольшие липофильные молекулы, но непроницаема для заряженных молекул и ионов, что является обязательным условием ее функционирования как сопрягающей мембраны. Однако в мемб­ране есть белки — транспортеры, с помощью которых возможен обмен мета­болитами между матриксом и цитозолем . Матрикс, т. е. окруженное внутренней мембраной пространство, содержит ферменты цикла трикарбоновых кислот.

ГЛЮКОЗА — ОСНОВНОЙ СУБСТРАТ ДЫХАНИЯ У РАСТЕНИЙ Основным субстратом дыхания у растений являются глюкоза и ее произ­водные, хотя в особых случаях дыхание могут поддерживать белки и жиры, запасенные в семенах. Глюкоза образуется в клетках растений при гидролизе крахмала и сахарозы — продуктов фотосинтеза. Крахмал представляет собой смесь двух полисахаридов — амилозы и амилопектина. Молекулы амилозы — это длинные, неразветвленные цепи α-D-глюкопиранозных остатков, соеди­ненных гликозидными α(1→4)-связями. Молекулы амилопектина также представлены цепями α -D-глюкопиранозных остатков, которые в точке ветвления образуют а(1→6)-связь. Крахмал как запасный полисахарид накапливается в хлоропластах и пластидах гетеротрофных тканей. Некоторые растения — топи­намбур (Heliantus tuberosus), георгин (Dahlia sp.) в качестве запасных углеводов могут использовать инулин и гемицеллюлозы. Сахароза — это дисахарид, обра­зованный остатками глюкозы и фруктозы. Она синтезируется в цитозоле, из фотосинтезирующих клеток по апопласту листа и сосудам флоэмы транспор­тируется в другие органы растения. Крахмал расщепляется до моносахаридов при участии ряда ферментов (α- и β-амилазы, α-1,6-глюкозидазы, крахмалфосфорилазы и др.) с образованием D-глюкозы или D-глюкозо-1-фосфата. Распад сахарозы может идти при обра­щении реакций ее синтеза, но в основном происходит в результате гидролиза при участии фермента инвертазы: сахароза + Н2О → фруктоза + глюкоза

В геноме таких растений, как томат (Lycopersicon esculentum), кукуруза (Zea mays), арабидопсис (Arabidopsis thaliana), морковь (Dancus carota), обнаружено целое семейство ядерных генов, кодирующих разные изоформы инвертазы. Например, у моркови кислые инвертазы (оптимум рН 4,5 — 5,0) в пяти разных изоформах присутствуют в вакуоли и клеточной стенке. В цитозоле есть нейт­ральная инвертаза (оптимум рН 7,0—8,0), которая также может иметь несколько изоформ. Таким образом, у растений гидролиз сахарозы может идти в разных клеточных компартментах и контролируется сложным образом через актив­ность инвертаз, обладающих разными свойствами.

Брожение- процесс анаэробного расщепления органических веществ, преимущественно углеводов, происходящий под влиянием микроорганизмов или выделенных из них ферментов. В ходе брожение в результате сопряженных окислительно-восстановительных реакций освобождается энергия, необходимая для жизнедеятельности микроорганизмов, и образуются химические соединения, которые микроорганизмы используют для биосинтеза аминокислот, белков, органических кислот, жиров и др. компонентов тела. Одновременно накапливаются конечные продукты брожение. В зависимости от их характера различают брожение спиртовое, молочнокислое, маслянокислое, пропионовокислое, ацетоно-бутиловое, ацетоно-этиловое и др. виды. Характер брожение, его интенсивность, количественные соотношения конечных продуктов, а также направление брожение зависят от особенностей его возбудителя и условий, при которых брожение протекает (pH, аэрация, субстрат и др.).

Спиртовое Брожение. В 1836 французский учёный Каньяр де ла Тур установил, что спиртовое брожение связано с ростом и размножением дрожжей. Химическое уравнение спиртового брожение: C6H12O6 ® 2C2H5OH + 2CO2 было дано французскими химиками А. Лавуазье (1789) и Ж. Гей-Люссаком (1815). Л. Пастер пришёл к выводу (1857), что спиртовое брожение могут вызывать только живые дрожжи в анаэробных условиях («брожение — это жизнь без воздуха»). В противовес этому немецкий учёный Ю. Либих упорно настаивал на том, что брожение происходит вне живой клетки. На возможность бесклеточного спиртового брожение впервые (1871) указала русский врач-биохимик М. М. Манассеина.

Немецкий химик Э. Бухнер в 1897, отжав под большим давлением дрожжи, растёртые с кварцевым песком, получил бесклеточный сок, сбраживающий сахар с образованием спирта иCO2. При нагревании до 50°C и выше сок утрачивал бродильные свойства. Всё это указывало на ферментативную природу активного начала, содержащегося в дрожжевом соке. Русский химик Л. А. Иванов обнаружил (1905), что добавленные к дрожжевому соку фосфаты в несколько раз повышают скорость брожение.

Исследования отечественных биохимиков А. И. Лебедева, С. П. Костычева, Я. О. Парнаса и немецких биохимиков К. Нейберга, Г. Эмбдена, О. Мейергофа и др. подтвердили, что фосфорная кислота участвует в важнейших этапах спиртового брожение   В дальнейшем многие исследователи детально изучили ферментативную природу и механизм спиртового брожение (см. схему). Первая реакция превращения глюкозы при спиртовом брожение — присоединение к глюкозе под влиянием фермента глюкокиназы остатка фосфорной кислоты отаденозинтрифосфорной кислоты (АТФ, см. Аденозинфосфорные кислоты). При этом образуются аденозиндифосфорная кислота (АДФ) и глюкозо-6-фосфорная кислотата. Последняя под действием фермента глюкозофосфати-зомеразы превращается в фруктозо-6-фосфорную кислоту, которая, получая от новой молекулы АТФ (при участии фермента фосфофруктокиназы) ещё один остаток фосфорной кислоты, превращается в фруктозо-1,6-дифосфорную кислоту. (Эта и следующая реакции, обозначенные встречными стрелками, обратимы, т. е. их направление зависит от условий — концентрации фермента, pH и др.) Под влиянием фермента кетозо-1-фосфатальдолазы фруктозо-1,6-дифосфорная кислота расщепляется на глицеринальдегидфосфорную и диоксиацетонфосфорную кислоты которые могут превращаться друг в друга под действием фермента триозофосфатизомеразы. Глицеринальдегидфосфорная кислота, присоединяя молекулу неорганической фосфорной кислоты и окисляясь под действием фермента дегидрогеназы фосфоглицеринальдегида, активной группой которого у дрожжей является никотинамидадениндинуклеотид (НАД), превращается в 1,3-дифосфоглицериновую кислоту. Молекула диоксиацетонфосфорной кислоты под действием триозофосфатизомеразы даёт вторую молекулу глицеринальдегидфосфорной кислоты, также подвергающуюся окислению до 1,3-дифосфоглицериновой кислоты; последняя, отдавая АДФ (под действием фермента фосфоглицераткиназы) один остаток фосфорной кислоты, превращается в З-фосфоглицериновую кислоту, которая под действием фермента фосфоглицеро-мутазы превращается в 2-фосфоглицериновую кислоту, а она под влиянием фермента фосфопируват-гидратазы — в фосфоенол-пировиноградную кислоту. Последняя при участии фермента пируваткиназы передаёт остаток фосфорнойкислоты молекуле АДФ, в результате чего образуется молекула АТФ и молекула енолпировиноградной кислоты, которая весьма нестойка и переходит в пировиноградную кислоту. Эта кислота при участии имеющегося в дрожжах фермента пируватдекарбоксилазы расщепляется на уксусный альдегид и двуокись углерода. Уксусный альдегид, реагируя с образовавшейся при окислении глицеринальдегидфосфорной кислоты восстановленной формой никотинамидадениндинуклеотида (НАД-Н), при участии фермента алкогольдегидрогеназы превращается в этиловый спирт. Суммарно уравнение спиртового брожение может быть представлено в следующем виде: C6H12O6 + 2H3PO4 + 2АДФ ® 2CH3CH2OH + 2CO2 + 2АТФ.   Т. о., при сбраживании 1 моля глюкозы образуются 2 моля этилового спирта, 2 моля CO2, а также в результате фосфорилирования 2 молей АДФ образуются 2 моля АТФ. Термодинамические расчёты показывают, что при спиртовом брожение превращение 1 моля глюкозы может сопровождаться уменьшением свободной энергии примерно на 210 кдж (50 000 кал), т. е. энергия, аккумулированная в 1 моле этилового спирта, на 210 кдж (50 000 кал) меньше энергии 1 моля глюкозы. При образовании 1 моля АТФ (макроэргических — богатых энергией фосфатных соединений) используется 42 кдж (10 000 кал). Следовательно, значительная часть энергии, освобождающейся при спиртовом  брожение, запасается в виде АТФ, обеспечивающей разнообразные энергетические потребности дрожжевых клеток. Такое же биологическое значение имеет процесс брожение и у др. микроорганизмов. При полном сгорании 1 моля глюкозы (с образованием CO2 и H2O) изменение свободной энергии достигает 2,87 Мдж (686 000 кал). Иначе говоря, дрожжевая клетка использует лишь 7% энергии глюкозы. Это показывает малую эффективность анаэробных процессов по сравнению с процессами, идущими в присутствии кислорода. При наличии кислорода спиртовое брожение угнетается или прекращается и дрожжи получают энергию для жизнедеятельности в процессе дыхания. Наблюдается тесная связь между брожением и дыханием микроорганизмов, растений и животных. Ферменты, участвующие в спиртовом брожение, имеются также в тканях животных и растений. Во многих случаях первые этапы расщепления сахаров, вплоть до образования пировиноградной кислоты, — общие для брожение и дыхания. Большее значение процесс анаэробного распада глюкозы имеет и при сокращении мышц , первые этапы этого процесса также сходны с начальными реакциями спиртового брожение.   Сбраживание углеводов (глюкозы, ферментативных гидролизатов крахмала, кислотных гидролизатов древесины) используется во многих отраслях промышленности: для получения этилового спирта, глицерина и др. технических и пищевых продуктов. На спиртовом Брожение основаны приготовление теста в хлебопекарной промышленности, виноделие и пивоварение.   Молочнокислое Брожение. Молочнокислые бактерии подразделяют на 2 группы — гомоферментативные и гетероферментативные. Гомоферментативные бактерии (например, Lactobacillus delbrückii) расщепляют моносахариды с образованием двух молекул молочной кислоты в соответствии с суммарным уравнением: C6H12O6 = 2CH3CHOH·COOH.   Гетероферментативные бактерии (например, Bacterium lactis aerogenes) ведут сбраживание с образованием молочной кислоты, уксусной кислоты, этилового спирта и CO2, а также образуют небольшое количество ароматических. веществ — диацетила, эфиров и т.д.    При молочнокислом брожение превращение углеводов, особенно на первых этапах, близко к реакциям спиртового брожение, за исключением декарбоксилирования пировиноградной кислоты, которая восстанавливается до молочной кислоты за счёт водорода, получаемого от НАД-Н. Гомоферментативное молочнокислое брожение используется для получения молочной кислоты, при изготовлении различных кислых молочных продуктов, хлеба и в силосовании кормов в сельском хозяйстве. Гетероферментативное молочнокислое брожение происходит при консервировании различных плодов и овощей путём квашения.   Маслянокислое Брожение. Сбраживание углеводов с преимущественным образованием масляной кислоты производят многие анаэробные бактерии, относящиеся к роду Clostridium. Первые этапы расщепления углеводов при маслянокислом Брожение аналогичны соответстветственным этапам спиртового брожение, вплоть до образования пировиноградной кислоты, из которой при маслянокислом брожение образуется ацетил-кофермент A (CH3CO-KoA). Ацетил-KoA может служить предшественником масляной кислоты, подвергаясь следующим превращениям:   Маслянокислое Брожение применялось для получения масляной кислоты из крахмала.   Ацетоно-бутиловое брожение бактерии Clostridium acetobutylicum сбраживают углеводы с преим. образованием бутилового спирта (CH3CH2CH2CH2OH) и ацетона (CH3COCH3). При этом образуются также в сравнительно небольших количествах водород, CO2, уксусная, масляная кислоты, этиловый спирт. Первые этапы расщепления углеводов те же, что и при спиртовом брожении. Бутиловый спирт образуется путём восстановления масляной кислоты: CH3CH2CH2COOH + 4H = CH3CH2CH2CH2OH + H2O.   Ацетон же образуется декарбоксилированием ацетоуксусной кислоты, которая получается в результате конденсации двух молекул уксусной кислоты. Исследованиями В. Н. Шапошникова показано, что ацетоно-бутиловое брожение (как и ряд др., например пропионовокислое, маслянокислое) в опытах с растущей культурой происходит в две фазы. В первую фазу брожение параллельно с нарастанием биомассы накапливаются уксусная и масляная кислоты; во вторую фазу образуются преимущественно ацетон и бутиловый спирт. При ацетоно-бутиловом брожение сбраживаются моносахариды, дисахариды и полисахариды — крахмал, инсулин, но не сбраживаются клетчатка и гемицеллюлоза. Ацетоно-бутиловое брожение использовалось для промышленного получения бутилового спирта и ацетона, применяемых в химической и лакокрасочной промышленности.   Сбраживание белков. Некоторые бактерии из рода Clostridium — гнилостные анаэробы — способны сбраживать не только углеводы, но и аминокислоты. Эти бактерии более приспособлены к использованию белков, расщепляемых ими при помощи протеолитических ферментов до аминокислот, которые затем подвергаются брожение. Процесс сбраживания белков имеет значение в круговороте веществ в природе.   Пропионовокислое Брожение. Основные продукты пропионовокислого брожение, вызываемого несколькими видами бактерий из рода Propionibacterium, — пропионовая (CH3CH2OH) и уксусная кислоты и CO2. Химизм пропионовокислого брожение сильно изменяется в зависимости от условий. Это, по-видимому, объясняется способностью пропионовых бактерий перестраивать обмен веществ, например в зависимости от аэрации. При доступе кислорода они ведут окислительный процесс, а в его отсутствии расщепляют гексозы путём брожение. Пропионовые бактерии способны фиксировать CO2, при этом из пировиноградной к-ты и CO2 образуется щавелевоуксусная к-та, превращающаяся в янтарную к-ту, из которой декарбоксилированием образуется пропионовая к-та:   Существуют брожение, которые сопровождаются и восстановительными процессами. Примером такого «окислительного» брожение служит лимоннокислое брожение. Многие плесневые грибы сбраживают сахара с образованием лимонной кислоты. Наиболее активные штаммы Aspergillus niger превращают до 90% потребленного сахара в лимонную кислоту. Значительная часть лимонной кислоты, используемой в пищевой промышленности, производится микробиологическим путём — глубинным и поверхностным культивированием плесневых грибов.   Иногда по традиции и чисто окислительные процессы, осуществляемые микроорганизмами, называется брожение. Примерами таких процессов могут служить уксуснокислое и глюконовокислое брожение.   Уксуснокислое Брожение. Бактерии, относящиеся к роду Acetobacter, окисляют этиловый спирт в уксусную кислоту в соответствии с суммарной реакцией:   Промежуточное соединение при окислении спирта в уксусную кислоту — уксусный альдегид. Многие уксуснокислые бактерии, кроме окисления спирта в уксусную кислоту, осуществляют окисление глюкозы в глюконовую и кетоглюконовую кислоты.   Глюконовокислое Брожение осуществляют и некоторые плесневые грибы, способные окислять альдегидную группу глюкозы, превращая последнюю в глюконовую кислоту:    Кальциевая соль глюконовой кислоты служит хорошим источником кальция для людей и животных.