Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ФЕРМЕНТИ

.doc
Скачиваний:
54
Добавлен:
04.02.2016
Размер:
58.88 Кб
Скачать

ФЕРМЕНТИ. СТРУКТУРА, ВЛАСТИВОСТІ Ферменти (ензими) - біологічні каталізатори білкової природи, які синтезуються в клітинах живих організмів і забезпечують необхідні швидкість і координацію біохімічних реакцій, що становлять обмін речовин (метаболізм). Розділ біохімії, що вивчає структуру, властивості та механізми дії ферментів, називається ензимологією. Прийняті в ензимології позначення: Е - фермент, ензим (enzyme, англ.) - біологічний каталізатор; S - субстрат (substrate, англ.) - хімічна речовина, сполука, перетворення якої каталізує фермент; Р - продукт (product, англ.) - сполука, що утворилася в результаті ферментативної реакції. Дія ферменту (Е) полягає в перетворенні субстрату (S) на продукт (Р) Властивості ферментів як біологічних каталізаторів Ферменти - специфічні білки, в основі каталітичної дії яких лежать загальні фізико-хімічні та термодинамічні закономірності хімічної кінетики та каталізу. Білкову природу ферментів беззаперечно довів Дж. Самнер (1926), який отримав перші кристалічні препарати ферменту уреази. Властивості ферментів - ферменти значно підвищують швидкість перебігу біохімічних реакцій, але не входять до складу кінцевих продуктів реакції; - ферменти забезпечують перебіг лише тих біохімічних реакцій, які можливі згідно з законами термодинаміки; - протягом реакції фермент певним чином взаємодіє із субстратом, що перетворюється, але до складу кінцевих про-дуктів реакції не входить. Під час перебігу біохімічної реакції, що каталізується, відбувається циклічний процес, в ході якого фермент та субстрат підлягають ступінчастому перетворенню з утворенням продукту реакції та регенерацією ферменту; - ферменти є високоспецифічними каталізаторами, тобто діють, як правило, на структурно близькі субстрати, що мають певний хімічний зв'язок, структурно подібні радикали або функціональні групи.  - відповідно до білкової природи, каталітична активність ферментів дуже чутлива до змін фізико-хімічних властивостей середовища (рН, температури), які можуть впливати на структурну організацію молекул ферментів, спричиняючи в певних умовах їх денатурацію; - активність ферментів може суттєво змінюватися під впливом певних хімічних сполук, що збільшують (активатори) або зменшують (інгібітори) швидкість реакції, яка каталізується. Фізико-хімічні властивості білків-ферментів 1. Кислотно-основні властивості білків Завдяки наявності значної кількості іоногенних груп (α-амінні та α-карбоксильні кінцеві групи, бічні радикали кислих та основних амінокислот) білкові молекули є амфотерними електролітами й у водних розчинах утворюють амфіони, знак та заряд яких залежить від їх амінокислотного складу та рН середовища. Подібно до вільних амінокислот, у кислому середовищі переважають катіонні форми білкових молекул, у лужних - аніонні. Наявність заряду в молекулах білків визначає їх здатність до електрофорезу - руху в постійному електричному полі. Електрофоретична рухомість молекул білків залежить від їх заряду та молекулярної маси, що дозволяє за-стосовувати метод електрофорезу для фракціонування складних білкових сумішей. Електрофорез як метод розділення білків сироватки крові широко використовується в клінічній біохімії. При застосуванні паперового або гелевого електрофорезу білки крові поділяються на такі основні фракції: альбуміни, α1-, α2-; β- та γ-глобуліни, фібриноген. Ё Змінюючи рН, можна перевести білок у стан, при якому сумарний електричний заряд білкової молекули дорівнює нулю (ізоелектричний стан). Відповідне значення рН отримало назву рН ізоелектричної точки білка (рІ). У складі більшості природних білків кількість аніоногенних амінокислотних залишків перевищує кількість катіоногенних залишків, тому для багатьох білків рі знаходиться в кислому середовищі, і при нейтральних або слаболужних значеннях рН вони існують у формі аніонів (наприклад, білки плазми крові). Лужними є компоненти ядерних дезоксирибо-нуклеопротеїнів білки гістони, що містять у своєму складі значну кількість залишків позитивно заряджених амінокислот аргініну та лізину. 2. Розчинність білків Розчинність окремих білків у різних фізико-хімічних середовищах залежить від пе-реважання в їх складі полярних або неполярних амінокислотних залишків. Багато глобулярних білків (зокрема, білків сироватки крові та інших біологічних рідин) містять на своїй поверхні гідрофільні залишки полярних незаряджених або заряджених амінокислот, які добре взаємодіють із дипольними молекулами води, утворюючи навколо білкових молекул гідратні оболонки. Ці білки добре розчинні у воді або слабких розчинах солей лужних металів. Збільшення в розчинах вмісту катіонів металів або амонію супроводжується де-гідратацією білкових молекул і осадженням певних білків (метод висолювання). Із цією метою найбільш часто використовуються концентровані розчини сульфату амонію, сульфату натрію, хлоридів натрію та калію. Змінюючи концентрацію висолюючих реагентів, можна здійснювати диференційоване осадження (фракціонування) певних білкових фракцій. Наприклад, в умовах напівнасичення сироватки крові сірчанокислим амонієм відбувається осадження глобулінів, при повному насиченні - альбумінів. 3. Денатурація білків Під денатурацією розуміють втрату білковою молекулою притаманної їй просторової структури та порушення характерних для даного білка фізико-хімічних властивостей. Денатурація супроводжується зниженням або втратою специфічної для даного білка біологічної активності (ферментативної, гормональної тощо).Вона відбувається внаслідок впливу на білкові розчини та білки, що знаходяться в біологічних середовищах, жорстких хімічних, фізико-хімічних та фізичних факторів. Денатурацію спричиняють дія кислот, лугів, органічних розчинників, нагрівання білків до 60-80 °С, дія високих доз ультрафіолетового та іонізуючого випромінювання. Механізм впливу денатуруючих агентів полягає в руйнуванні слабких зв'язків (водневих, іонних, дипольних, гідрофобних), що стабілізують упорядковані типи просторової організації білкових молекул (вторинну та третинну структуру). 4. Взаємодія білків із різними хімічними лігандами Внаслідок наявності на поверхні білкових молекул значної кількості активних функ-ціональних груп, білки здатні до зв'язування різноманітних хімічних лігандів. До лігандів, з якими можуть взаємодіяти білкові молекули, належать низькомолекулярні та високомолекулярні сполуки - як біомолекули, так і чужорідні хімічні сполуки, що надходять в організм з оточуючого середовища. Зв'язування білками певних хімічних лігандів у багатьох випадках є механізмом реалізації транспортної, регуляторної або каталітичної функцій даних білків. Наприклад, сорбція жирних кислот та білірубіну альбуміном сироватки крові, зв'язування глюко-кортикоїдів та прогестинів транскортином плазми є етапом циркуляторного транспорту цих біомолекул, взаємодія специфічного білка клітин шлунка (фактора Касла) з вітаміном В необхідна для всмоктування цього вітаміну слизовою оболонкою. Взаємодія деяких білків із лігандами являє собою форму депонування останніх (наприклад, зв'язування іонів заліза з білком феритином). Поряд із білками, взаємодія яких із небілковими лігандами є етапом їх транспорту або депонування, існують класи білків, які постійно зв'язані з певними небілковими сполуками, що являють собою інтегральні структурні компоненти цих білків. У даному випадку йдеться про генетичну запрограмованість окремих білкових структур до взаємодії із своїми лігандами і реалізацію білком його специфічних функцій тільки у складі таких хімічних або фізико-хімічних комплексів. На відміну від зазначених вище типів взаємодій, зв'язування таких складних білків з їх небілковими частинами у багатьох представників цих білків (глікопротеїнів, фосфопротеїнів) відбувається внутрішньоклітинно і є етапом біосинтезу даного білка - посттрансляційної модифікації, що здійснюється в ендоплазматичному ретикулумі або апараті Гольджі після рибосомального складання поліпептидного ланцюга. Одиниці виміру активності ферментів Оскільки кількість ферменту в біологічному об'єкті у більшості випадків визначити неможливо, для характеристики швидкості біохімічної реакції, що каталізується певним ферментом, за умов сталості інших показників середовища (фізико-хімічних параметрів, концентрації активаторів та інгібіторів) користуються значеннями активності ферменту. Активність ферменту - це умовна величина, що прямо пропорційна швидкості біохімічної реакції, яку каталізує певний фермент. У свою чергу, як легко зрозуміти, швидкість ферментативної реакції можна визначити або за кількістю субстрату (Б), що перетворився за певний проміжок часу, або за кількістю накопиченого за цей час продукту реакції (Р). У біохімічній практиці для кількісної характеристики реакцій, що каталізуються ферментами, використовують умовні величини - одиниці ферменту. Загальновживаними є такі одиниці ферменту: 1. За одиницю ферменту U (unit, англ.), що рекомендована Міжнародним біохімічним союзом (МБС), приймають таку його кількість, яка каталізує перетворення 1 мкмоль субстрату за 1 хвилину: 1 U = 1 мкмолъ/хв. 2. При використанні одиниць системи CI (SI) активність ферменту виражають у каталах (кат). 1 Катал (кат) - така кількість ферменту, яка каталізує перетворення 1 моля субстрату за 1 с: 1 кат = 1 моль/с. 3. Розповсюдженою одиницею є питома активність ферменту, яка визначається кількістю одиниць ферментної активності, що припадають на 1 мг білка в біологічному об'єкті (U/мг білка). У медичній ензимології активність ферменту часто виражають в одиницях (U) на 1 л досліджуваної біологічної рідини - сироватки крові, слини, сечі тощо (U/л). Хімічна структура ферментів. Коферменти  За хімічною структурою ферменти є простими білками або складними білками (тобто такими, що містять у собі небілкову частину). Білкова частина складного білка-ферменту має назву апофермент (апоензим), небілкова - кофермент (коензим). Повна назва складного ферменту -холофермент: апофермент + кофермент =холофермент  Олігомерні білки-ферменти Багато ферментних білків складаються з декількох субодиниць (протомерів), що являють собою різні поліпептидні ланцюги, сполучені нековалентними зв'язками -олігомерні ферменти. Найбільш розповсюджені олігомерні ферменти, що містять у собі два (С2), чотири (С4) або шість (С6) протомерів. Окрім ферментів, що складаються з однакових за хімічною природою протомерів, існують ферменти, до складу яких входять різні за будовою та біохімічними функціями субодиниці. Наприклад, фермент аспартаткарбамоїлтрансфераза складається з шести каталітичних та шести регуляторних субодиниць (С6R6). Приклади деяких білків-ферментів, що мають олігомерний склад. Мультиензимні комплекси У клітині, особливо в складі біологічних мембран, деякі ферменти здатні утворювати поліферментні (мультиензимні) комплекси (системи), що каталізують послідовності спряжених біохімічних реакцій. Такі поліферментні комплекси складаються з декількох десятків фізично асоційованих білків-ферментів, кожен з яких каталізує певну реакцію. Розрізняють: 1. Розчинні мультиензимні системи, в яких відсутня постійна асоціація між ферментами Е1, Е2 , Е3, Е4; відбувається дифузія субстратів та продуктів реакції А, В, С, D між окремими ферментами. 2. Мультиензимні системи, в яких окремі ферменти сполучені між собою нековалентними зв'язками, утворюючи комплекси, які полегшують передавання субстратів та продуктів між окремими ферментними білками. 3. Мембрано-зв'язані мультиензимні системи, в яких окремі ферменти асоційовані з ліпідним бішаром субклітинних органел (мітохондрій, ендоплазматичного ретикулуму тощо). Прикладом мультиензимних систем може бути піруватдегідрогеназний комплекс, виділений із мітохондрій та Е. coli. Зокрема, піруватдегідрогеназний комплекс Е. coli, що має м.м. 4,0 10б, складається з 24 молекул ферментного білка піруватдегідрогенази (м.м. - 90 кДа; із кожною молекулою білка зв'язаний тіаміндифосфат — ТДФ), молекули дигідроліпоїлтрансацетилази (яка складається з 24 протомерів - окремих поліпептидних ланцюгів із м.м. 36 кДа; кожен ланцюг містить залишок ліпоєвої кислоти) та 12 молекул дигідроліпоїлдегідрогенази (м.м. -55 кДа; кожна молекула сполучена з ФАД). Ізоферменти Ізоферменти (ізоензими; ізозими) - множинні молекулярні форми одного й того ж ферменту. Ізоферменти каталізують одну й ту ж біохімічну реакцію, але розрізняються за своєю первинною структурою і, відповідно, фізико-хімічними (молекулярною масою, рухомістю при електрофорезі тощо) та каталітичними (різною спорідненістю ферменту із субстратом -Кт) властивостями. Різні ізоферменти одного й того ж ферменту можуть бути присутні в різних органах і тканинах (ізоферменти лактатдегідрогенази), субклітинних структурах (мітохондріальний та цитозольний ізоферменти ізоцитратдегідрогенази). Ізоферменти належать до більш широкого класу ізобілків - множинних молекулярних форм певного білка, що зустрічаються в різних організмах у межах одного біологічного виду і є результатами експресії різних генетичних локусів або алеломорфами — продуктами одного локусу. В разі, якщо фермент, що представлений ізоферментними формами, має олігомерну будову, його ізоферменти формуються за рахунок різних комбінацій неідентичних протомерів. Прикладом такого ізоферментного сімейства можуть бути ізоферменти лактатдегідрогенази (ЛДГ) - ферменту, що каталізує оборотну реакцію перетворення піровиноградної кислоти в молочну. За своєю молекулярною будовою ЛДГ є тетрамером, що побудований із протомерів двох типів: Н (серцевого - heart, англ.) та М (м'язового - muscle). В організмі людини присутні п'ять комбінацій зазначених протомерів, які створюють різні ізо-ферменти ЛДГ: ЛДГ1 (Н4), ЛДГ2 (Н3М1), ЛДГ3 (Н2М2), ЛДГ4 (Н1М3) та ЛДГ5 (М4). Вони розподілені переважно в різних органах (міокарді, печінці, скелетних м'язах, нирках тощо). Ці ізоферменти розрізняються за своєю електрофоретичною рухомістю, що мають різну швидкість пересування в поліакриламідному або крохмалевому гелі  і їх визначення в плазмі крові має діаг-ностичне значення для виявлення пошкоджень мембранних структур клітин, що спостерігаються при різних захворюваннях. Зокрема, при інфаркті міокарда збільшується концентрація в плазмі ізоферменту ЛДГ1, а при інфекційному та токсичному гепатиті - ізоформ ЛДГ4 та ЛДГ5, характерних для клітин печінки.