Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ЛЕКЦИЯ 5

.doc
Скачиваний:
63
Добавлен:
07.02.2016
Размер:
88.58 Кб
Скачать

СЛАЙД 1 ЛЕКЦИЯ №5 ПИЩЕВЫЕ ДОБАВКИ, ДЛЯ ФОРМИРОВАНИЯ СТРУКТУРЫ И РЕГУЛИРОВАНИЯ ТЕКСТУРЫ ПИЩЕВЫХ ПРОДУКТОВ ( ПЕНООБРАЗОВАТЕЛИ. ЭМУЛЬГАТОРЫ

СЛАЙД 2 ПЕНООБРАЗОВАТЕЛИ

Одним из способов изменения консистенции и структуры пищевых продуктов в целях удовлетворения вкусов потребителей является введение в пищевое сырье диспергированного воздуха или другого газа. Для многих продуктов питания пенообразная структура оказывает решающее влияние на их отличительные свойства (например, в хлебобулочных и некоторых кондитерских изделиях, мороженом, напитках и десертных изделиях).

В этот функциональный класс пищевых добавок входят вещества (так называемые пенообразователи), обеспечивающие равномерную диффузию газообразной фазы в жидкие и твердые пищевые продукты. В результате образуются пены и газовые эмульсии.

Пена представляет собой дисперсную систему, состоящую из ячеек — пузырьков газа (пара), разделенных пленками жидкости (или твердого вещества). Обычно газ (пар) рассматривается как дисперсная фаза, а жидкость (или твердое вещество) — как непрерывная дисперсионная среда. Пены, в которых дисперсионной средой является твердое вещество, образуются при отверждении растворов или расплавов, насыщенных каким-либо газом. Жидкие или твердые пленки, разделяющие пузырьки газа, образуют в совокупности пленочный каркас, являющийся основой пены.

Структура пен определяется соотношением объемов газовой и жидкой фаз и в зависимости от него ячейки пены могут иметь сферическую или многогранную (полиэдрическую) форму.

Получить пены, как и другие дисперсные системы, можно диспергационным и конденсационным способами.

При диспергационном способе пена образуется в результате интенсивного совместного диспергирования пенообразующего раствора и воздуха. Диспергирование осуществляется следующими методами:

  • при прохождении струи газа через слой жидкости в барботаж-ных или аэрационных установках;

  • в технологических аппаратах при перемешивании мешалками, встряхивании, взбивании, переливании растворов.

Конденсационный способ получения пен основан на пересыщении раствора газом. К этому способу относится получение пен в результате химических реакций и микробиологических процессов, сопровождающихся выделением газа. Так, в процессе ферментации теста, которая идет по схеме молочнокислого брожения, из глюкозы помимо молочной и янтарной кислот образуются вызывающие пенообразование газы (СО2 + Н2).

Получение пен может быть обусловлено действием нескольких источников пенообразования одновременно. Так, некоторые технологические процессы осуществляют с аэрацией и перемешиванием.

Для получения пен необходимой устойчивости в систему вводят пенообразователи, которые подразделяют на два типа (рода):

  • истинно растворимые (низкомолекулярные) ПАВ;

  • коллоидные ПАВ, белки и ряд других природных высокомолекулярных соединений.

Т.е. при введении ПАВ происходит изменение поверхностного натяжения на границе раздела фаз жидкой дисперсионной среды с газовой дисперсной фазой путем адсорбция их молекул в тонком слое пленки.

В результате истечение жидкости из пенной пленки и ее утончение замедляются, а время «жизни» пены увеличивается. Утончению пленок препятствует также избыточное давление, возникающее в тонком слое. Адсорбционный слой ПАВ изменяет структуру поверхности межфазной границы, повышая ее механическую прочность.

В присутствии пенообразователей первого рода устойчивость пен повышается пропорционально концентрации введенного ПАВ. Однако такие пены быстро разрушаются по мере истечения жидкости из пенных пленок.

СЛАЙД 3 Примеры пищевых пен и природа их образования приведены на слайде

Таблица 2.2 - Источники образования основных видов пищевых пен

Если пенообразующим веществом служит яичный белок, то вследствие развертывания его молекул на границе межфазного раздела наступает поверхностная денатурация. Денатурированный белок повышает стабильность пен.

Одновременно могут образовываться связи между полипептидными цепями с возникновением пространственной двух- и трехмерной структуры в виде сетки, которая благоприятствует повышению стабильности пены.

СЛАЙД 4 технологические функции пенообразователя имеют четыре пищевые добавки (метилэтилцеллюлоза, жирные кислоты, экстракт квиллайи, триэтилцитрат).

Таблица 2.3 - Пищевые пенообразователи

При снижении давления и повышении температуры растворимость газа в жидкости снижается. Жидкость вспенивается, из нее может выделяться газ. Подобный процесс происходит при вскрытии бутылок с игристыми винами, пивом и другими напитками. В отличие от шампанского, лимонада и боржоми пиво содержит пенообразователи — хмелевые смолы, белки, декстрины и др.

СЛАЙД 5 ЭМУЛЬГАТОРЫ

Пищевые эмульсии всем нам известны, например молоко- это природная эмульсионно-коллоидная система, в которой жир стабилизирован белковыми оболочками, окружающими шарики молочного жира. В отличии от природных эмульсий, пищевые эмульгаторы получили распространение совсем недавно благодаря своей способности стабилизировать пищевые продукты во время обработки, хранения и транспортировки. В начале применялись природные эмульгаторы, такие как яичный и молочный белки, фосфолипиды. Сейчас в основном на рынке преобладают синтетические пищевые эмульгаторы.

Эмульгаторы – это вещества, уменьшающие поверхностное натяжение на границе раздела фаз. Их добавляют к пищевым продуктам для получения тонкодисперсных и устойчивых коллоидных систем. В частности, с помощью таких добавок создают эмульсии жира в воде или воды в жире. Такая способность связана с поверхностно-активными свойствами, поэтому применительно к данной группе пищевых добавок термины «эмульгатор», «эмульгирующий агент» и «поверхностно-активное вещество» могут рассматриваться как синонимы.

Основными функциями эмульгаторов являются образование и поддержание в однородном состоянии смеси несмешиваемых фаз, таких, как масло и вода. Однако в отдельных пищевых системах применение этих добавок может быть связано не столько с эмульгированием, сколько с их взаимодействием с другими пищевыми ингредиентами, например белками или крахмалом.

В настоящее время во всем мире продается и производится приблизительно 500000т эмульгаторов. В США пищевые эмульгаторы подразделяются на 2 категории:

- вещества имеющие статус GRAS – разрешенные для применения в пищевой промышленности без ограничений: лецитин (Е322), Моноглицериды (Е471), Эфиры глицерина и диацетилвинной и жирных кислот (Е472)

-прямые пищевые добавки

CЛАЙД 6,7 Эмульгаторы, относящиеся к категории прямых пищевых добавок

СЛАЙД 8 КЛАССИФИКАЦИЯ ЭМУЛЬГАТОРОВ

Эффективность эмульгатора можно характеризовать соотношением между гидрофильной и гидрофобной частями молекул ПАВ. Гидрофильные свойства определяются взаимодействием полярных групп с водой. Гидрофобный радикал обусловливает лиофильное взаимодействие между неполярной цепью молекул ПАВ и маслом. Лиофильное взаимодействие радикала ПАВ и масла будет гидрофобным по отношению к воде. Иными словами, в этих условиях радикал ПАВ хорошо взаимодействуют с маслом и плохо — с водой.

Поверхностная активность определяется соотношением между гидрофильной и гидрофобной частями молекул ПАВ. Для коротко цепочечных ПАВ преобладает гидрофильное взаимодействие, в результате которого молекулы втягиваются в воду. Противоположный эффект обнаруживается в случае длинноцепочечных ПАВ. Гидрофобное взаимодействие по отношению к воде и лиофильное — к маслу обусловливает нахождение этих молекул в масле. Уравновешивание гидрофильного и лиофильного взаимодействий, так называемый гидрофильно-липофильный баланс (ГЛБ), т.е. определенное оптимальное соотношение действия воды и масла на молекулы ПАВ, определяет условия образования адсорбционного слоя на границе раздела двух жидкостей.

По типу гидрофильных групп различают ионные и неионные ПАВ. Ионные поверхностно-активные вещества диссоциируют в водных растворах на ионы, одни из которых поверхностно-активны, другие — наоборот (противоионы). В свою очередь, в зависимости от знака заряда поверхностно-активного иона они делятся на анионные, катионные и амфотерные. Молекулы неионных ПАВ, естественно, не диссоциируют в растворе.

СЛАЙД 9 Основным свойством, объединяющим эмульгаторы и отличающий их от пищевых добавок других классов, является их поверхностная активность

Поверхностно-активные вещества позволяют регулировать свойства гетерогенных систем, которыми являются пищевое сырье, полуфабрикаты или готовая пищевая продукция. Свойства эмульгаторов используются в технологиях маргаринов, соусов, майонезов и т.д.

В целом стабильность эмульсий зависит от ряда отдельных факторов: (СЛ)

СЛАЙД 10 Основные технологические функции эмульгаторов в пищевых системах: пенообразование, комплексообразование с крахмалом, солюбилизация, взаимодействие с белками, изменение вязкости, модификация кристаллов, смачивание, намазывание.

Применяемые в пищевой промышленности ПАВ — это не индивидуальные вещества, а многокомпонентные смеси. Химическое название препарата при этом соответствует лишь его основной части.

СЛАЙД 11,12,13 Перечень эмульгаторов, разрешенных к применению при производстве пищевых продуктов на Украине, приведен на сл 11-13.

Таблица 2.4 - Пищевые эмульгаторы, разрешенные к применению при производстве пищевых продуктов на Украине

СЛАЙД 14 Эффективными эмульгаторами являются высокомолекулярные ПАВ (желатин, сапонины, оливиниловые спирты и др) Эти вещества на границе раздела фаз образуют пленки. В эмульсионных технологиях существует правило: водорастворимые эмульгаторы образуют эмульсии «масло в воде», маслорастворимые эмульгаторы – Эмульсии «вода в масле»

На СЛ 15 приведены основные характеристики пищевых эмульгаторов

Фосфолипиды синтезируются в организме животных и человека. Установлено, что введение лецитина ( Е322) в рацион питания человека в течение длительного времени не сопровождается какими-либо неблагоприятными последствиями. Объединенным комитетом экспертов ФАО/ВОЗ по пищевым добавкам установлено, что безусловно допустимая доза для человека составляет до 50 мг (в дополнение к ежедневному приему при обычном рационе) и условно допустимая — 50 — 100 мг на 1 кг массы тела. Принято считать, что средний пищевой рацион взрослого человека содержит 1—5 г лецитина.

Лецитин применяется при производстве хлеба, мучных кондитерских изделий, конфет, шоколада, напитков, мороженого, сухого молока.

Жирные кислоты и их соли (Е 481—Е 482) применяют в пищевой промышленности в качестве эмульгаторов. Это олеиновая, стеариновая, пальмитиновая кислоты и их натриевые, калиевые, кальциевые соли. Их добавляют при производстве хлебобулочных и кондитерских изделий в концентрации до 5 г на 1 кг массы продуктов.

Алифатические спирты жирного ряда, получаемые в результате гидрирования соответствующих жирных кислот, отчасти являются естественными компонентами жиров. В большинстве случаев это стеариловые и олеиловые спирты. Они применяются непосредственно или в виде сложных эфиров уксусной, молочной, фумаровой, яблочной, лимонной и других кислот в качестве стабилизаторов при изготовлении печенья. К таким пищевым добавкам относятся, например, ацилированный моноацилглицерол (Е 472), малат-эфир (Е 472с), стеароилмолочная кислота (Е 48П), Стеароиллактилат натрия (Е 481), олеиллактилат кальция (Е 482) и др. Области применения добавок этой группы различны: используются в хлебопечении, сахарной промышленности и при производстве мороженого. Стеароилмолочная кислота (производное молочной кислоты с высшими жирными кислотами) и ее натриевая соль (Стеароиллактилат натрия) используются в качестве поверхностно-активного вещества для маргаринов и других продуктов. Применение этих пищевых добавок разрешено без ограничения.

Сложные эфиры жирных кислот, сахара и сорбита также входят в класс эмульгаторов. Этерификация Сахаров (сахарозы, глюкозы) и сорбитов (сорбитангидрида) жирными кислотами дает группу эмульгаторов с широким диапазоном поверхностно-активных свойств. Эфиры сахарозы и жирных кислот (Е 473) применяются в производстве кондитерских изделий, мороженого и хлебопечении Их можно комбинировать с полиоксиэтиленами (полиэтиленгликолиевые эфиры), в результате чего получают эмульгаторы с измененными эмульгирующими свойствами. Наиболее известные из них так называемые СПЭНы и Твины. СПЭНы — это сложные эфиры жирных кислот с сорбитами, а Твины — СПЭН-эмульгаторы с гидроксильными группами, полностью или частично замещенными группами О—(СН2—СН2—О)n—Н, т. е. представляют собой продукты полиоксиэтиленов со СПЭНами.

Сорбитанмоностеарат, или СПЭН 60 (Е 491), сорбитантристеарат (Е 492), сорбитанмонолаурат, или СПЭН 20 (Е 493), сорбитан-моноолеат, или СПЭН80 (Е 494), сорбитантриолеат, или СПЭН 85 (Е 496), Твин 20, Твин 40, Теин 60, Твин 80 (Е 432- Е 435) применяют при изготовлении жировых эмульсий, шоколада, печенья, кондитерских изделий, мороженого из сухого молока, яичного и какао-порошков, а также для улучшения растворимости кофе.

Сложные эфиры сахара, сорбита и жирных кислот не представляют опасности в токсикологическом отношении, но они не должны содержать растворителей. Объединенный комитет экспертов ФАО/ВОЗ по пищевым добавкам для сложных эфиров сорбита и жирных кислот, а также для сложных эфиров полиоксиэтиленсорбатов и жирных кислот установил допустимое суточное потребление, составляющее 0 — 25 мг, для сложных эфиров сахарозы и жирных кислот — 2,5 мг на 1 кг массы тела. При этом допустимое содержание диметилформамида как остатка растворителя ограничивается 50 мг на 1 кг вещества. Добавка сложных эфиров сахарозы, сорбита и жирных кислот в пищевые жиры ограничена количеством до 20 г на 1 кг продукта, а сложных эфиров сахарозы в маргарине — 10 г/кг. В России применение пищевых добавок Е 491 —Е 496 запрещено. Эфиры сахарозы и жирных кислот разрешены в России и странах Европейского Сообщества, за исключением Германии.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]