Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по биохимии.doc
Скачиваний:
252
Добавлен:
09.02.2016
Размер:
837.12 Кб
Скачать

1 Биохимия – это наука о структуре веществ, входящих в состав живого организма, их превращениях и физико-химических процессах, лежащих в основе жизнедеятельности.

Биохимия является одной из фундаментальных дисциплин медицины и биологии. Она занимается познанием живого на уровне макромолекул. Биохимия – это результат интеграции биологии и химии.

Разделы биохимии:

1. статическая (биоорганическая химия);

2. динамическая (изучает превращение веществ);

3. функциональная (изучает физико-химические процессы).

Выделяют разделы биохимии в зависимости от объекта изучения: биохимия животных, микроорганизмов, растений, человека, клиническая биохимия и т.д.

Основные задачи биохимии:

1. изучение процессов биокатализа;

2. изучение строения и функций нуклеиновых кислот;

3. изучение молекулярных механизмов наследственности;

4. изучение строения, обмена белков;

5. изучение превращения углеводов;

6. изучение процессов обмена липидов;

7. изучение роли биорегуляторов (гормоны, нейромедиаторы);

8. изучение роли витаминов и минеральных веществ.

Обмен веществ, или метаболизм – это совокупность всех химических реакций, протекающих в организме и направленных на сохранение и самовоспроизведение живых систем. Растения строят сложные органические вещества из таких простых, как вода, углекислый газ и минеральные вещества; энергия, необходимая для этой деятельности, образуется за счет поглощения солнечных лучей в процессе фотосинтеза. Животные организмы нуждаются в пище, состоящей не только из воды и минеральных компонентов, но содержащей белки, жиры и углеводы; проявления жизнедеятельности и синтез веществ обеспечиваются за счет химической энергии, освобождающейся при распаде сложных органических соединений.Анаболизм — это совокупность процессов биосинтеза органических веществ, компонентов клетки и других структур органов и тканей. Анаболизм обеспечивает рост, развитие, обновление биологических структур, а также непрерывный ресинтез макроэргических соединений и их накопление.Катаболизм — это совокупность процессов расщепления сложных молекул, компонентов клеток, органов и тканей до простых веществ и до конечных продуктов метаболизма (с образованием макроэргических и восстановленных соединений).  Значение БХ для медицины:

1. необходима для понимания сущности заболевания (патогенеза), его механизма. Пр.: сахарный диабет в результате недостатка инсулина, атеросклероз – нарушение обмена липопротеинов, опухолевый рост – функционирование онкогенов;

2. необходима для диагностики заболеваний. Пр.: биохимический анализ крови, мочи. Определяется:

а) количество субстрата (уровень метаболита);

б) активность фермента;

в) количество биорегуляторов (гормонов и нейропептидов);

В диагностике заболеваний используются различные методы: радио-иммуный анализ, иммуно-ферментный анализ, введение ДНК-зондов для выявления чужеродной ДНК, дефектов ДНК, онкогенов. Также позволяет выявить предрасположенность к заболеваниям;

3. разработка новых лекарственных препаратов;

4. необходима для профилактики заболеваний. Пр.: рахит – в результате\

2. Первичная структура

Аминокислотные остатки в пептидной цепи белков расположены в определённом порядке. Линейную последовательность аминокислотных остатков в полипептидной цепи называют"первичная структура белка".

Первичная структура каждого индивидуального белка закодирована в участке ДНК, называемом геном. В процессе синтеза белка информация, находящаяся в гене, сначала переписывается на мРНК, а затем, используя мРНК в качестве матрицы, на рибосоме происходит сборка первичной структуры белка

Все молекулы данного индивидуального белка имеют одинаковое чередование аминокислотных остатков в белке, что в первую очередь отличает данный индивидуальный белок от любого другого. Аминокислоты могут ковалентно связываться друг с другом с помощью пептидных связей.

Пептидная связь образуется между а-карбоксильной группой одной аминокислоты и ?-аминогруппой другой, т.е. является амидной связью. При этом происходит отщепление молекулы воды

.Характеристика пептидной связи

Пептидная связь имеет характеристику частично двойной связи, поэтому она короче, чем остальные связи пептидного остова, и вследствие этого мало подвижна. Электронное строение пептидной связи определяет плоскую жёсткую структуру пептидной группы. Плоскости пептидных групп расположены под углом друг к другу (рис. 1-1).

Связь между ?-углеродным атомом и ?-аминогруппой или ?-карбоксильной группой способна к свободным вращениям (хотя ограничена размером и характером радикалов), что позволяет полипептидной цепи принимать различные конфигурации.

Пептидные связи обычно расположены в транс-конфигурации, т.е. а-углеродные атомы располагаются по разные стороны от пептидной связи. В результате боковые радикалы аминокислот находятся на наиболее удалённом расстоянии друг от друга в пространстве (рис. 1-2).

Пептидные связи очень прочны и самопроизвольно не разрываются при нормальных условиях, существующих в клетках (нейтральная среда, температура тела). В лабораторных условиях гидролиз пептидных связей белков проводят в запаянной ампуле с концентрированной (6 моль/л) соляной кислотой, при температуре более 105 °С, причём полный гидролиз белка до свободных аминокислот проходит примерно за сутки.

В живых организмах пептидные связи в белках разрываются с помощью специальных протеолитических ферментов (от англ, protein - белок, lysis - разрушение), называемых также протеазами, или пептидгидролазами.

Для обнаружения в растворе белков и пептидов, а также для их количественного определения используют биуретовую реакцию (положительный результат для веществ, содержащих в своём составе не менее двух пептидных связей).

3. Аминокислоты, входящие в состав белков. Общая характеристика и классификация. Аминокислоты – органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и амино-группы -NH2.Аминокислоты можно рассматривать как производные карбоновых кислот, в молекулах которых один или несколько атомов водорода углеводородного радикала заменены аминогруппами. Аминокислоты соединены между собой пептидной связью. В природе встречается гораздо больше АК, чем входит в состав животных и растительный белков. Так, множество «небелковых» АК содержится в пептидных антибиотиках или являются промежуточными продуктами обмена белков. В состав белков входит 20 АК в альфа-форме, расположенных в различной, но строго определенной для каждого белка. Аминокислоты классифицируют по следующим структурным признакам. 1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокисло-ты подразделяют на 2. По характеру углеводородного радикала различают алифатические(жирные) и ароматические аминокислоты. 3. По источнику получения: природные и синтетические 4. По способности синтезироваться в человеческом организме природные аминокислоты классифицируют на: заменимые, полу- и незаменимые –,(синтезируются только растениями).Незаменимые АК поступают в человеческий организм только с пищей. К незаменимым аминокислотам относятся: валин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан. Полузаменимыми являются: аргинин, гистидин и тирозин. 5. По pH среды аминокислоты могут быть:нейтральные (моноамино монокарбоно-вые), кислые (моноаминодикарбоновые) и основные (диаминомонокарбоновые кислоты),

Строение пептида

Количество аминокислот в составе пептидов может сильно варьировать. Пептиды, содержащие до 10 аминокислот, называют олигопептиды Часто в названии таких молекул указывают количество входящих в состав олигопептида аминокислот: трипептид, пентапептид, окгапептид и т.д.

Пептиды, содержащие более 10 аминокислот, называют "полипептиды", а полипептиды, состоящие из более чем 50 аминокислотных остатков, обычно называют белками. Однако эти названия условны, так как в литературе термин "белок" часто употребляют для обозначения полипептида, содержащего менее 50 аминокислотных остатков. Например, гормон глюкагон, состоящий из 29 аминокислот, называют белковым гормоном.

Мономеры аминокислот, входящих в состав белков, называют "аминокислотные остатки". Аминокислотный остаток, имеющий свободную аминогруппу, называется N-концевым и пишется слева, а имеющий свободную ?-карбоксильную группу - С-концевым и пишется справа. Пептиды пишутся и читаются с N-конца. Цепь повторяющихся атомов в полипептидной цепи -NH-CH-CO-носит название "пептидный остов"

При названии полипептида к сокращённому названию аминокислотных остатков добавляют суффикс -ил, за исключением С-концевой аминокислоты. Например, тетрапептид Сер-Гли-Про-Ала читается как серилглицилпролилаланин.

Пептидная связь, образуемая иминогруппой пролина, отличается от других пептидных связей, так как атом азота пептидной группы связан не с водородом, а с радикалом.

Пептиды различаются по аминокислотному составу, количеству и порядку соединения аминокислот.

.Биологическая роль пептидов

В организме человека вырабатывается множество пептидов, участвующих в регуляции различных биологических процессов и обладающих высокой физиологической активностью.

Количество аминокислотных остатков в структуре биологически активных пептидов может варьировать от 3 до 50.

Некоторые из пептидов, в частности большинство пептидных гормонов, содержат пептидные связи, образованные а-аминогруппой и а-карбоксильной группой соседних аминокислот. Как правило, они синтезируются из неактивных белковых предшественников, в которых специфические протеолитические ферменты разрушают определённые пептидные связи.

Функции пептидов зависят от их первичной структуры Изменение в аминокислотном составе пептидов часто приводит к потере одних и возникновению других биологических свойств..

Так как пептиды - мощные регуляторы биологических процессов, их можно использовать как лекарственные препараты. Основное препятствие для терапевтического использования - их быстрое разрушение в организме. Одним из важнейших результатов исследований является не только изучение структуры пептидов, но и получение синтетических аналогов природных пептидов с целенаправленными изменениями в их структуре и функциях.

Открытые и изученные в настоящее время пептиды можно разделить на группы по их основному физиологическому действию:

  • пептиды, обладающие гормональной активностью (окситоцин, вазопрессин, рилизинг-гормоны гипоталамуса, меланоцитстимулирующий гормон, глюкагон и др.);

  • пептиды, регулирующие процессы пищеварения (гастрин, холецистокинин, вазоинтестиналшый пептид, желудочный ингибирующий пептид и др.);

  • пептиды, регулирующие тонус сосудов и АД (брадикинин, калидин, ангиотензин II);

  • пептиды, регулирующие аппетит (лептин, нейропептид Y, меланоцитстимулирующий гормон, (?-эндорфины);

  • пептиды, обладающие обезболивающим действием (энкефалины и эндорфины и другие опиоидные пептиды). Обезболивающий эффект этих пептидов в сотни раз превосходит анальгезирующий эффект морфина;

  • пептиды, участвующие в регуляции высшей нервной деятельности, в биохимических процессах, связанных с механизмами сна, обучения, памяти, возникновения чувства страха и т.д.

Однако такое деление пептидов крайне условно. Появились данные о том, что многие пептиды обладают широким спектром действия. Так, меланоцитстимулирующий гормон, помимо стимуляции пигментообразования, участвует в регуляции аппетита (вместе с лептином подавляет потребление пищи и является антагонистом нейропептида Y). В то же время ?-эндорфины, кроме анальгезирующего эффекта, - синергисты нейропептида Y, т.е. усиливают потребление пищи. Описанный выше вазопрессин, кроме антидиуретического и сосудосуживающего действия, имеет свойство улучшать память.

4. Вторичная структура белков

Вторичная структура белков - пространственная структура, образующаяся в результате взаимодействий между функциональными группами, входящими в состав пептидного остова. При этом пептидные цепи могут приобретать регулярные структуры двух типов: а-спираль и в-структура.

а-Спираль

В данном типе структуры пептидный остов закручивается в виде спирали за счёт образования водородных связей между атомами кислорода карбонильных групп и атомами азота аминогрупп, входящих в состав пептидных групп через 4 аминокислотных остатка. Водородные связи ориентированы вдоль оси спирали На один виток ?-спирали приходится 3,6 аминокислотных остатка.

В образовании водородных связей участвуют практически все атомы кислорода и водорода пептидных групп. В результате ?-спираль "стягивается" множеством водородных связей. Несмотря на то, что данные связи относят к разряду слабых, их количество обеспечивает максимально возможную стабильность ?-спирали. Так как все гидрофильные группы пептидного остова обычно участвуют в образовании водородных связей, гидрофильность (т.е. способность образовывать водородные связи с водой) ?-спиралей уменьшается, а их гидрофобность увеличивается.

а-Спиральная структура - наиболее устойчивая конформация пептидного остова, отвечающая минимуму свободной энергии. В результате образования ?-спиралей полипептидная цепь укорачивается, но если создать условия для разрыва водородных связей, полипептидная цепь вновь удлинится.

Радикалы аминокислот находятся на наружной стороне ?-спирали и направлены от пептидного остова в стороны. Они не участвуют в образовании водородных связей, характерных для вторичной структуры, но некоторые из них могут нарушать формирование ?-спирали. К ним относят:

  • пролин. Его атом азота входит в состав жёсткого кольца, что исключает возможность вращения вокруг -N-CH- связи. Кроме того, у атома азота пролита, образующего пептидную связь с другой аминокислотой, нет атома водорода. В результате пролин не способен образовать водородную связь в данном месте пептидного остова, и ?-спиральная структура нарушается. Обычно в этом месте пептидной цепи возникает петля или изгиб;

  • участки, где последовательно расположены несколько одинаково заряженных радикалов, между которыми возникают электростатические силы отталкивания;

  • участки с близко расположенными объёмными радикалами, механически нарушающими формирование ?-спирали, например метионин, триптофан.

в-Структура

в-Структура формируется за счёт образования множества водородных связей между атомами пептидных групп линейных областей одной полипептидной цепи, делающей изгибы, или между разными полипептидными цепями, ?-Структура образует фигуру, подобную листу, сложенному "гармошкой", - ?-складчатый слой

Когда водородные связи образуются между атомами пептидного остова различных полипептидных цепей, их называют межцепочечными связями. Водородные связи, возникающие между линейными участками внутри одной полипептидной цепи, называют внутрицепочечными. В ?-структурах водородные связи расположены перпендикулярно полипептидной цепи.

Если связанные полипептидные цепи направлены противоположно, возникает антипараллельная ?-структура, если же N- и С-концы полипептидных цепей совпадают, образуется структура параллельного ?-складчатого слоя В отличие от ?-спиралей, разрыв водородных связей, формирующих ?-структуры, не вызывает удлинения данных участков полипептидных цепей.

Как ?-спираль, так и ?-структуры обнаружены в глобулярных и фибриллярных белках.

Нерегулярные вторичные структуры

В белках отмечают области с нерегулярной вторичной структурой, которые часто называют беспорядочными клубками. Они представлены петлеобразными и кольцеобразными структурами, имеющими меньшую регулярность укладки, чем описанные выше ?-спиралъ и ?-структура. Однако и они не так сильно варьируют от одной молекулы белка к другой. В каждом индивидуальном белке они имеют свою фиксированную конформацию, определяемую аминокислотным составом данного участка цепи и окружающих его участков.

Термином "беспорядочный клубок" также часто называют денатурированный белок, образовавшийся после разрыва слабых внутримолекулярных связей и потерявший свою упорядоченную структуру. 5. Третичная структура белков

Третичная структура белков - трёхмерная пространственная структура, образующаяся за счёт взаимодействий между радикалами аминокислот, которые могут располагаться на значительном расстоянии друг от друга в полипептидной цепи.

Связи, участвующие в формировании третичной структуры белков

Гидрофобные взаимодействия

При укладке полипептидная цепь белка стремится принять энергетически выгодную форму, характеризующуюся минимумом свободной энергии. Поэтому гидрофобные радикалы аминокислот стремятся к объединению внутри глобулярной структуры растворимых в воде белков. Между ними возникают так называемые гидрофобные взаимодействия, а также силы ван дер Ваальса между близко прилегающими друг к другу атомами. В результате внутри белковой глобулы формируется гидрофобное ядро. Гидрофильные группы пептидного остова при формировании вторичной структуры образуют множество водородных связей, благодаря чему исключается связывание с ними воды и разрушение внутренней, плотной структуры белка.

Ионные и водородные связи

Гидрофильные радикалы аминокислот стремятся образовать водородные связи с водой и поэтому в основном располагаются на поверхности белковой молекулы.

Все гидрофильные группы радикалов аминокислот, оказавшиеся внутри гидрофобного ядра, взаимодействуют друг с другом с помощью ионных и водородных связей

  • Ионные связи могут возникать между отрицательно заряженными (анионными) карбоксильными группами радикалов аспарагиновой и глутаминовой кислот и положительно заряженными (катионными)

.

  • группами радикалов лизина, аргинина или гистидина.

  • Водородные связи возникают между гидрофильными незаряженными группами (такими как -ОН, -CONH2, SH-группы) и любыми другими гидрофильными группами. Белки, функционирующие в неполярном (ли-пидном) окружении, например белки мембран, имеют обратное устройство: гидрофильные радикалы аминокислот расположены внутри белка, в то время как гидрофобные аминокислоты локализованы на поверхности молекулы и контактируют с неполярным окружением. В каждом случае радикалы аминокислот занимают наиболее выгодное биоэнергетическое положение.

  • Ковалентные связи

Третичную структуру некоторых белков стабилизируют дисульфидные связи, образующиеся за счёт взаимодействия SH-групп двух остатков цистеина. Эти два остатка цистеина могут находиться далеко друг от друга в линейной первичной структуре белка, но при формировании третичной структуры они сближаются и образуют прочное ковалентное связывание радикалов (рис. 1-12).

Большинство внутриклеточных белков лишено дисульфидных связей. Однако такие связи распространены в белках, секретируемых клеткой во внеклеточное пространство. Полагают, что эти ковалентные связи стабилизируют кон-формацию белков вне клетки и предотвращают их денатурацию. К таким белкам относят гормон инсулин и иммуноглобулины.  Супервторичная структура белков

Пространственная структура каждого белка индивидуальна и определяется его первичной структурой. Однако сравнение конформаций разных по структуре и функциям белков выявило наличие у них похожих сочетаний элементов вторичной структуры. Такой специфический порядок формирования вторичных структур называют супервторичной структурой белков. Супервторичная структура формируется за счёт межрадикальных взаимодействий.

Определённые характерные сочетания а-спиралей и в-структур часто обозначают как "структурные мотивы

6. Четвертичная структура белков

Многие белки содержат в своём составе только одну полипептидную цепь. Такие белки называют мономерами. К мономерным относят и белки, состоящие из нескольких цепей, но соединённых ковалентно, например дисульфидными связями (поэтому инсулин следует рассматривать как мономерный белок).

В то же время существуют белки, состоящие из двух и более полипептидных цепей. После формирования трёхмерной структуры каждой полипептидной цепи они объединяются с помощью тех же слабых взаимодействий, которые участвовали в образовании третичной структуры: гидрофобных, ионных, водородных.

Количество и взаиморасположение полипептидных цепей в пространстве называют "четвертичная структура белков". Отдельные полипептидные цепи в таком белке носят название протомеров, или субъединиц. Белок, содержащий в своём составе несколько протомеров, называют олигомерным.

В состав олигомерных белков может входить от двух до нескольких десятков протомеров, хотя наиболее часто встречают белки, содержащие от двух до четырёх полипептидных цепей (димерные, тетрамерные белки).

Некоторые олигомерные белки содержат идентичные протомеры (например, гексокиназа), другие состоят из разных протомеров. Так, в составе гемоглобина присутствуют 2 ?- и 2 ?-протомера,

7. Активный центр белков и избирательность связывания его с лигандом

Активный центр белков - определённый участок белковой молекулы, как правило, находящийся в её углублении ("кармане"), сформированный радикалами аминокислот, собранных на определённом пространственном участке при формировании третичной структуры и способный комплементарно связываться с лигандом. В линейной последовательности полипептидной цепи радикалы, формирующие активный центр, могут находиться на значительном расстоянии друг от друга.

Высокая специфичность связывания белка с лигандом обеспечивается комплементарностью структуры активного центра белка структуре лиганда

Под комплементарностью понимают пространственное и химическое соответствие взаимодействующих молекул. Лиганд должен обладать способностью входить и пространственно совпадать с конформацией активного центра. Это совпадение может быть неполным, но благодаря конформационной лабильности белка активный центр способен к небольшим изменениям и "подгоняется" под лиганд. Кроме того, между функциональными группами лиганда и радикалами аминокислот, образующих активный центр, должны возникать связи, удерживающие лиганд в активном центре. Связи между лигандом и активным центром белка могут быть как нековалентными (ионными, водородными, гидрофобными), так и ковалентными.

Взаимодействие белка с лигандом. А и Б - некомплементарное взаимодействие и разрушение связей между белком и лигандом; В - комплементарное взаимодействие белка с лигандом.

Уникальные свойства активного центра зависят не только от химических свойств формирующих его аминокислот, но и от их точной взаимной ориентации в пространстве. Поэтому даже незначительные нарушения общей конформации белка в результате точечных изменений его первичной структуры или условий окружающей среды могут привести к изменению химических и функциональных свойств радикалов, формирующих активный центр, нарушать связывание белка с лигандом и его функцию. При денатурации активный центр белков разрушается, и происходит утрата их биологической активности.

Часто активный центр формируется таким образом, что доступ воды к функциональным группам его радикалов ограничен, т.е. создаются условия для связывания лиганда с радикалами аминокислот.

В некоторых случаях лиганд присоединяется только к одному из атомов, обладающему определённой реакционной способностью, например присоединение О2 к железу миоглобина или гемоглобина. Однако свойства данного атома избирательно взаимодействовать с О2 определяются свойствами радикалов, окружающих атом железа в составе тема. Гем содержится и в других белках, таких как цитохромы. Однако функция атома железа в цитохромах иная, он служит посредником для передачи электронов от одного вещества другому, при этом железо становится то двух-, то трёхвалентным.

Центр связывания белка с лигандом часто располагается между доменами. Например, протеолитический фермент трипсин, участвующий в гидролизе пептидных связей пищевых белков в кишечнике, имеет 2 домена, разделённых бороздкой. Внутренняя поверхность бороздки формируется аминокислотными радикалами этих доменов, стоящими в полипептидной цепи далеко друг от друга (Сер177, Гис40, Асп85).

Разные домены в белке могут перемещаться друг относительно друга при взаимодействии с лигандом, что облегчает дальнейшее функционирование белка.

8. Физико-химические свойства белков:

Индивидуальные белки различаются по своим физико-химическим свойствам: форме молекул, молекулярной массе, суммарному зарядумолекулы, соотношению полярных и неполярных групп на поверхности нативной молекулы белка, растворимости белков, а также степени устойчивости к воздействию денатурирующих агентов.