Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Geometr / Глава 18. Приложение 2 о хаосе и фракталах.doc
Скачиваний:
79
Добавлен:
11.02.2016
Размер:
22.49 Mб
Скачать

Приложение II. Основные понятия о хаосе, синергетике и фракталах д. И. Ткач, а. Б. Нифанин

(Днепропетровск), Украина

Приложение ІІ. ОСНОВНЫЕ ПОНЯТИЯ О ХАОСЕ, СИНЕРГЕТИКЕ И ФРАКТАЛАХ

Іі.1. Ведение к понятию о хаосе

Более двух с четвертью тысячеле-тий человечество убеждалось в справе-ливости евклидовой геометрии, аксиом-матически описывающей позиционные и метрические свойства объектов реа-льного пространства. При этом в каче-стве изучаемых принимались те реаль-ные объекты, которые геометрически моделировались как элементы эвкли-дова пространства и их системы Но среди природных или естественных объектов таковых крайне мало. Разве что натянутая или провисающая паути-на, поверхность спокойной воды, кон-тур полной Луны, некоторые кристал-лы, поверхность птичьего яйца, пчели-ные соты и немногое другое. Основ-ную же массу естественных объектов составляют элементы рельефа – горы, возвышенности, ущелья, долины с про-текающими по ним извилистыми река-ми, плывущие над ними постоянно ме-няющие свою форму тучи и облака, ку-пол звёздного неба, многочисленные представители флоры и фауны и, на-конец, люди, столь разные по своей внешности, но принципиально одинако-вые по своей структуре. И все это нахо-дится в непрерывном движении и раз-личных превращениях, вызываемых ус-ловиями его существования. Вода пре-вращается в пар, снег или лёд, мале-нький желудь превращается в могучий дуб, углерод – в алмаз, опавшие листья и трава - в гумус и т.д.

По первому впечатлению вся сово-купность естественных объектов, про-цессов и явлений представляется ха-отическим разнообразием. Поэтому эв-клидова геометрия как наука о форме, положении и размерах тех частей про-странства, которые в нем занимают ве-щественные тела, не могла своим ак-сиоматическим методом описывать эти объекты, так как поверхность горы – не коническая, древесной коры – не ци-линдрическая, камня-валуна – не сфе-рическая и т.д. И не описывала. Пото-му, что все виды естественных объек-тов, процессов и явлений стали изучать

различные естественные науки – физи-

ка, химия, география, геология, топо-графия, ботаника, зоология, биология, астрономия и т.д. Но каждая из этих наук имеет свой геометрический раздел – морфологию предмета своего иссле-дования.

Изучая морфологию существую-щего объекта, естествоиспытатель при-бегает к его непосредственному вос-приятию, а также к инструментальному исследованию при помощи микроско-па, УЗИ, лазера, томографа, телескопа и т.д. В итоге он получает объективную информацию о том, из каких конкрет-ных элементов состоит этот объект и какими связями и отношениями эти элементы объединяются в единое це-лое, интегрируя собой форму той ло-кальной части пространства, которую они занимают.

Резкое и принципиальное различие между структурами идеализированных объектов эвклидова пространства, ло-кализованных в сознании человека, и структурами реально существующих объектов, подлежащих изучению, опре-деляется различием исходных миро-воззренческих концепций, определяю-щих это сознание. Эти концепции сфор-мировались под влиянием идей трёх выдающихся исторических личностей: Гераклита Эфесского, родившегося около 544 г. до н.э. и прожившего 61 год, Аристотеля, родившегося через 101 год после смерти Гераклита и про-жившего 62 года, и Евклида Алексан-дрийского, родившегося за 8 лет до смерти Аристотеля и прожившего 55 лет. Таким образом, Евклид и Аристо-тель были современниками и их эпоху от эпохи Гераклита отделяло целое столетие.

Гераклит был философом-матери-алистом, одним из тех, кто заложил ос-новы диалектики как науки о «наиболее общих законах развития природы, об-щества и мышления, философской тео-рии и метода познания и преобразо-вания предметов, явлений действите-льности в их противоречивом самодви-жении»[ 56 ].

Аристотель был философом и ло-гиком, ученым-энциклопедистом, твор-чески обобщившим в своих сочинениях успехи философии и логики, физики и астрономии, биологии и психологии,

этики и эстетики, истории и социологии того времени. Он явился основополож-ником формальной логики как науки «о законах выводного знания, т.е., знания, полученного из ранее установленных и проверенных истин, без обращения к опыту, а только в результате приме-нения законов и правил мышления» и силлогистики как «учения формальной логики о видах и правилах построения таких умозаключений, в которых из двух категорических суждений, связан-ных общим средним термином, получа-ется третье суждение, называемое вы-водом» [56].

Содержание этих двух мыслитель-ных технологий как нельзя лучше легло в основу аксиоматического метода ис-следования геометрических свойств объектов природы, применённого Ев-клидом в его «Началах», содержащих изложение евклидовой геометрии.

Философия Аристотеля и геомет- рия Евклида повлияли на всю нашу жизнь. На их основе были разработаны причинно-следственные концепции, за-коны движения И.Ньютона, сохранения энергии и возрастания энтропии, ока-завшиеся относительными. Новейшие результаты научных исследований до-казали их несовершенство.

В отличие от Аристотеля Гераклит интуитивно чувствовал, что Вселенная находится в постоянном движении, что стабильность и гомеостазис, т.е., не-подвижность и постоянство не явля-ются нормой. Его изречение: «Всё те-чёт, всё изменяется…. Нельзя войти в одну и ту же реку дважды» стало деви-зом его учения о развитии, из которого выросла диалектика. Эта концепция была и остаётся адекватной природе Природы, но в борьбе за умы людей победила формальная логика Аристо-теля и геометрия Евклида и поэтому практически все наши мысли, любой тип анализа, который мы используем, -следствие их влияния.

Буквально до ХХ века классическая наука базировалась на предположении Аристотеля о том, что Вселенная ана-логична точно идущим часам. «Естест-венное» положение вещей передава-лось гладкими линиями и формами, приятными глазу. Непредвиденные от-

клонения рассматривались как «случа-

йное поведение» и считалось несущес-твенным.

Современная наука стала развива-ться со времен великого Ньютона, ког- да «научный метод», унаследованный от Аристотеля и провозглашенный Ф. Бэконом стал общепризнанным мето-дом научных исследований и открытий. Крупные учёные, опираясь на этот ме-тод, исследовали Природу и, экспери-ментируя, получали новые результаты, однако не все из них поддавались ра-зумному объяснению.

Кроме знаний, полученных на осно-ве материалистической науки, основан-ной на приборном эксперименте, наша цивилизация имеет многотысячелетний опыт получения знаний на основе мыс-ленного эксперимента, проводимого в состоянии глубокой медитации. Ин-формация, получаемая таким образом, преобразовывалась сознанием адепта в слуховую, визуальную, кинестетиче-скую форму, которая затем трансфор-мировалась в произведения искусства, философскую доктрину, физическую или математическую теорию или в раз-новидность общественной деятельнос-ти.

Фактически вся ортодоксальная на-ука была создана также на базе той ин-формации, которые такие учёные, как Галилей, Ньютон, Максвелл, Менделе-ев, Эйнштейн, Бор, Гейзерберг, Маль-денброт и др. получали из информа-ционного поля Вселенной и преобразо-

вывали в конкретные физико-математи-ческие конструкции. Многие из получен-ных знаний удалось подтвердить экспе-риментально, но далеко не все. Поэто-му наука подошла к ХХ столетию с бо-льшим количеством наработанного, но необъяснимого ( в рамках старой пара-дигмы) материала.

ХХ век вошел в историю науки бла-годаря трём фундаментальным откры-тиям, полностью изменившим наше представление о мире. Это теория от-носительности, квантовая механика и теория хаоса, которая включает в себя информатику, кибернетику, гологра-фию, нелинейную динамику и фракта-льную геометрию.

В истории науки ничто не предве-щало создание теории относительнос-ти. Ученых занимали четыре элемента,

которые считались не связанными друг с другом: массой, энергией, простран-

ством и временем. Заслугой Эйнштей-на является его идея о единстве прост-ранства и времени и о взаимообрати-мости вещества и энергии, которые не различаются между собой [118].

Эти идеи привели к овладению ато-мной энергией и коренному изменению научных представлений о мире. Вывод Эйнштейна о скорости света в 300000 км/сек как о предельной величине ско-рости материи в пространстве был оп-ровергнут квантовой механикой. Оказа-лось, что электрон, двигаясь с неверо-ятной скоростью, превышающей скоро-сть света, может находиться одновре-менно в двух местах, что противоречит логике Аристотеля.

Реальный мир элементарных час-тиц и Вселенной оказался не подчиняю-щимся классическим законам, полным парадоксов, которые следовало разре-шить. В 1965 году Джон Стюард Белл опубликовал теорему «О нелокальнос-ти причин», которая гласит, что отдель-ные причины различных событий не могут быть изолированы друг от друга, что всё во Вселенной взаимосвязано, что изолированных систем не сущест-вует и что вся система, подсистемы которой разделены огромными рассто-яниями, между которыми отсутствуют сигналы, поля, силы, энергии и т.д., функционирует как Единая Система.

Американский исследователь Давид Бом пошел дальше Белла. По его утве-рждению реальность едина и представ-ляет собой неделимую целостность, лежащую в основе материи и сознания, поставляющую исходный материал для всех проявленных сущностей и собы-тий. Она, как самоорганизующаяся сис-тема, порождает, поддерживает и конт-ролирует все, в ней происходящее пу-тём постоянной связи со всем в глу-бинной структуре целого [118]. То есть, по Бому всё во Вселенной не только взаимосвязано, но в действительности является одной и той же сущностью.

Так что в жизни мы наблюдаем мир не Аристотеля, а Гераклита. В нем нет дискретных категорий и длящейся ста-бильности. В этом мире все непрерыв-но изменяется и идеальные формы эв-

клидовой геометрии являются аберра-

циями, а не нормой.

Да, экосферный мир Природы фе-номенален и неэвклидов. Но он с неза-памятных времен заполняется ноуме-нальными, т.е., умосоздаваемыми тех- носферными объектами, берущими на-чало в концептуальном пространстве сознания человека и превращаются в очень сложную систему взаимосвязан-ных природных и искусственных объ-ектов, т.е., объектов ноосферы или пространства разума (см. рис.3.4). В этом пространстве мыслящий разум по-стигает суть феноменального и полу-ченная информация служит основой со-здания ноуменальных объектов второй природы человека и пополняет инфор-мационное поле Земли и Вселенной. Как сказал поэт Н. Заболоцкий :

Два мира есть у человека:

Один, который нас творил,

Другой, который мы от века

Творим, по мере наших сил.

Процесс постижения сути природ-ных объектов и явлений основан на взаимосвязи мысленных и натурных экспериментов. Первые вырабатывают научные концепции, вторые подтверж-дают или опровергают их истинность. И история научной мысли иллюстрирует цепь этих подтверждений и опроверг-жений. Геоцентрическая теория миро-здания Птолемея через 500 лет была опровергнута гелеоцентрической теори-ей Николая Коперника. Последняя бы-ла развита идеей Джордано Бруно о множественности миров, подобных сол-нечной системе, а также трудами Га-лилео Галилея, доказавшими её верно-сть. Николай Лобачевский усомнился в истинности 5-го постулата Евклида о параллельных прямых и пришел к не-эвклидовой геометрии глобальных про-странств космических масштабов. Но тем самым он не опроверг геометрию Евклида, а только лишь определил гра-ницы справедливости её аксиоматики локальностью тех реальных простран-ств, свойства которых ею описываются.

Подобно этому, классическая физика Ньютона, справедливая для простран-ства, которое описывается геометрией Евклида, оказалась несовершенной для описания глобального пространства Вселенной, где справедливы релятиви-

стская физика Эйнштейна и геометрии

Рис. ІІ.1. Из хаоса к порядку.

Монастырь Святого Павла на горе Афон.

Худ. Эдвард Лир. ХIX в. Музей изящных искусств. Лондон.

пространства-времени Миньковского и

Лобачевского. В свою очередь физика элементарных частиц и квантовая ме-ханика, изучающие структуру материи в пределах нанопространств и наносе-кунд, не могут полностью довольство-ваться физикой Эйштейна и геометри-ей Лобачевского.

Выходом из этого положения оказа-лось создание американским физиком Митчеллом Файгенбаумом теории хао-са, позволившей окончательно освобо-дить физику из тенет ньютоновского ви-дения мира. В итоге оказалось, что «те-ория относительности разделалась с иллюзиями Ньютона об абсолютном пространстве-времени, квантовая меха-ника развеяла мечту о детерминизме физических событий и, наконец, хаос развенчал лапласову фантазию о пол-ной предопределённости развития сис-тем» [24].

Наука о хаосе родилась в резуль-тате наблюдений за облаками. Файген-баум, наблюдая их, пришел к выводу, что они кочуют в беспорядке, но их ст-руктура в каком-то смысле упорядоче-на. Они принимают формы горных це-пей или изрытых глубокими морщинами образований, похожих на поверхность мозга. Грозовые облака пропускают и отражают свет и видны издалека. Небе-сный свод являет взору человека гран-диозное зрелище как безмолвный укор физикам, которые обходят своим вни-манием облака – феномен, хоть и структурированный, но слишком рас-плывчатый и совершенно непредска-зуемый. Так же непредсказуема турбу-лентность в морских течениях и возду-шных потоках, хаотичны колебания чи-сленности популяций растений и живот-ных, апериодичности пиков энцефало-граммы мозга или сокращений сердеч-ных мышц и т.п. Все эти хаотично про-текающие нелинейные процессы в при-роде, лишенные регулярности и устой-чивости, на протяжении веков наукой игнорировались и фраза «ошибка в из-мерениях» использовалась всякий раз, когда получаемые результаты не укла-дывались в рамки причинно-следствен-ной парадигмы.

Однако Митчелл Файгенбаум, ос-мысливая впечатления от облаков, при-шел к идее о всеобщности «поведе-ния» нелинейных систем, которая озна-чала, что различные системы ведут се-бя одинаково. На основе этого им была создана универсальная теория перехо-да от упорядоченного состояния к тур-

булентному, т.е., хаотическому.

Поэтому, начиная с середины 1970-х годов представители различных есте-ственных наук стали активно изучать хаотические явления в природе. Физио-логи находят присутствие некоторого порядка в хаотических сокращениях се-рдечных мышц как основной причины внезапной смерти, экологи исследуют скачки численности популяций насеко-мых и животных, экономисты изучают старые биржевые сводки для разработ-ки новых методов анализа рынка цен-ных бумаг и т.п. В итоге выясняется, что полученные результаты примени-мы к описанию других природных явле-ний: очертаниям облаков, формам раз-рядов молний, конфигурациям сетчаток кровеносных сосудов, звездным скоп-лениям и т.п.

Развитию теории хаоса способст-вовало создание достаточно мощных компьютеров, необходимых для мате-матического и функционального анали-за нового мировоззрения. В итоге уда-лось успешно смоделировать сложные живые и неживые формы и турбулент-ные потоки, не моделируемые традици-онными математическими аппаратами.

Работая над теорией хаоса, ученые пришли в выводу, что это система пре-дставлений о различных формах по-рядка. «Хаос представляет собой бо-лее высокую форму порядка, где слу-чайность и бессистемные импульсы становятся организующим принципом скорее, нежели более традиционные причинно-следственные отношения в теориях Ньютона и Евклида» [10]. От-сюда следует, что термин «хаос» как беспредельное мировое пространство с изначальным смешением всех стихий, синоним беспорядка и бессистемности, не отражает содержания его теории, но пока остается в употреблении.

Хаос извечен. Он существовал все-гда и повсюду и существует поныне. Мы – продукт хаоса, а не изобретатели его. Он создал нас и будет влиять и оп-ределять наше существование ибо на- ше тело, индивидуальность и всё про-

Рис. ІІ.2.Хаос как сложный порядок

чее развивались в результате сложных

взаимодействий между стабильностью и хаосом, порядком и беспорядком. Процесс нашего мышления – результат взаимодействия стабильности и хаоса,

активности линейной и нелинейной, т.

е., левополушарной и правоволушар-ной. Хаос обнаруживает себя в капри-зах природы, в траекториях полета птиц, в характере движения автомоби-лей в дорожной пробке. Он более точно объясняет явления в области астроно-мии, биологии, химии, созидательных сил природы, магнитного поля Земли, экономики, здоровья, дорожного движе-ния, состояние рынка.

Теория хаоса революционна, осно-вана на «возможностях» Канта и никог-да не прекращающихся изменениях Ге-раклита. Хаос свидетельствует, что не-линейное мышление приводит к более точному пониманию нестандартных си-туаций, что законы природы являются гибкими, а не строгими, и это позволяет исследователям сосредотачивать вни-мание на особенностях процесса, а не на его содержании, так как они при этом имеют возможность учитывать и использовать те данные, которыми классическая наука пренебрегала как случайными.

Теория хаоса опровергает преж-ние традиционные взгляды учёных на Вселенную. Её старый «часовой меха-низм» неадекватен реальности. Преж-ние законы оказались вероятностными. Ранее считалось, что, зная все перво-начальные условия, можно делать точ-ные прогнозы на будущее, так как Все-ленной управляют неизменные законы.

Однако оказалось, что, в силу своего саморазвития, являясь всеобщими, они значительно более свободны. Как счи-тает крупнейший физик Пол Дэвис, у природы «нет детального плана, а только набор законов, обладающих вс-троенной возможностью приводить в действие интересные механизмы. Все-ленная вольна создавать себя по мере своего развития. Предначертана общая схема развития, но не детали. Таким образом, существование разумной жиз-ни на определенном этапе неизбежно: оно прописано, так сказать, в законах природы» [10].

Действительно, зная законы приро-

ды, мы можем точно предсказать сме-

ну времён года, продолжительность ка-ждого светового дня в году, время нас-тупления солнечных и лунных затме-ний, парадов планет, звездопадов и ко-

мет, но не можем точно предсказать по-году на неделю, особенно в условиях наступающего глобального потепления.

Так, в 1961 году ученый-метеоро-лог Эдвард Лоренц, используя компью-тер в предсказаниях погоды, пришел к выводу, что даже минимальное измене-ние начальных условий в любом непе-риодическом процессе приводит к не-предсказуемым результатам. Он сфор-мулировал следующий «Эффект бабо-чки» : «Движение крыла бабочки в Перу через серию непредсказуемых и взаи-мосвязанных событий может усилить движение воздуха и, в итоге, привести к урагану в Техасе» [118]. Об этом же писал знаменитый математик Анри Пу-анкаре: «Совершенно ничтожная причи-на, ускользающая от нас по своей ма-лости, вызывает значительное дейст-вие, которое мы не можем предусмот-реть» [71]. Эти ситуации являются раз-новидностями причинности как одной из форм всеобщей взаимосвязи яв-лений объективного мира, где под при-чиной понимается явление, которое так связано с другим явлением-следстви-ем, что они взаимно обуславливают существование друг друга. Только они становятся явлениями хаоса, когда в содержании причины не учитываются её ничтожно-малые элементы, что при-водит к неожиданным или непредсказу-емым последствиям. Этим объясняют-ся различного рода техногенные и эко-логические катастрофы, вызываемые ошибками в расчетах, не учитывающих малозаметные, но реально существую-щие факторы воздействия на конструк-цию (обрушение купола в Истре из-за его низкой морозоустойчивости или по-крытия спортивно-развлекательного центра «Трансвааль» в Москве из-за недооценки величины снеговой нагруз-ки и др.). Взрыв 4-го энергоблока Чер-нобыльской АЭС был вызван несовер-шенством автоматики, обеспечиваю-щей его безопасность, а колоссальное количество выхлопных газов разрушает озоновый слой Земли и вызывает гло-бальное потепление с его непредсказу-

Рис. ІІ.3. Бенуа Мандельброт

Рис. ІІ.4. Береговая линия Норвегии как фрактал

емыми последствиями. Поэтому ничего

случайного нет. Лоренц в своей модели погоды кроме хаотичности обнаружил некий порядок, выдающий себя за слу-чайность, который предстоит познать.

ІІ.2. Основные понятия о фракталах

Одним из инструментов теории ха-оса, используемых для изучения приро-дных объектов, хаотичных с точки зре-ния евклидовой геометрии и линейной математики, является теория фракта-лов, способная описать эти объекты.

Фракталы встречаются везде, где отсутствуют объекты с эвклидовой ст-руктурой. Объекты же гераклитовой природы, не описываемые евклидовой геометрией, описываются геометрией фрактальной.

Понятие фрактал ( от лат. fraktus – расколотый, раздробленный, состоя-щий из фрагментов), ввел в 1975 году бельгийский ученый польского происхо-ждения Бенуа Мандельброт для обоз-начения нерегулярных, но самоподоб-ных природных структур. В своей рабо-те он использовал работы таких учёных как Пуанкаре, Жюлиа, Кантора, Хаус-дорфа и других, работавших в 1875 – 1925 годах в этой области. Поначалу такие структуры воспринимались как патологии в природе и известный мате-матик Шарль Эрмит окрестил их «мон-страми». Но Мандельброт, заинтересо-вавшись ими, стал исследовать их поя-вление и свойства. Он отыскал нишу для имевших дурную репутацию мно-жеств Кантора, кривых Пеано, функций Вейерштрасса и их многочисленных разновидностей, которые считались нонсенсом. Он и его ученики открыли много новых фракталов, в частности, фрактальное броуновское движение для компьютерного моделирования ле-сного и горного ландшафтов, облаков, морских волн и легкого представления любых неевклидовых объектов, образы которых весьма похожи на природные.

Одним из основных свойств фрак-талов является их самоподобие. В са-мом простом случае небольшая часть фрактала содержит информацию обо всем фрактале.

Рождение фрактальной геометрии связано с выходом в 1977 году книги Мандельброта «Фрактальная геомет-рия природы», в которой автор дает определение фрактала как «структуры, состоящей из частей, которые в каком-то смысле подобны целому»[11].

Но бесконечное дробление и подо-бие мельчайших частей целому – это

принцип «устройства» природы.

Мандельброт объясняет сущность этого процесса на примере вычисления длины береговой линии или любой на-циональной границы.

По Евклиду длина береговой линии вообще неизмерима. Если бы линия побережья, допустим, Норвегии, имела закономерную евклидову форму, то её длина определялась бы точно. Но в на-туре эта горизонтальная плоская ли-ния, изрезанная фигурами фьордов, имеет совершенно незакономерную, т.е., фрактально-хаотическую форму (рис.ІІ.4).

По мнению Мандельброта, резуль-тат измерения длины береговой линии зависит от величины единицы измере-ния. Ведь процесс измерения чего бы то ни было является процедурой сопо-ставления длины измеряемого элемен-та с длиной единицы измерения. Если такой единицей будет метр или фут, то результат получится менее точным в сравнении с результатом измерения миллиметрами или дюймами. Но и в последнем случае из поля внимания измерящего исчезнут такие элементы береговой линии как мелкая галька и песчинки в неисчеслимом количестве и результат измерения окажется прибли-зительным. Другими словами, чем ме-ньше цена деления мерительного инс-трумента, тем большее число сопоста-вимых с нею элементов объекта можно измерить. Но проблема в том, что при-родные объекты дробятся до бесконеч-ности и процесс измерения бесконеч-но-большого количества бесконечно малых элементов бесконечно-малыми единицами измерения займет бесконе-чно-большое время и выдаст бесконеч-но-большой интегральный результат.

Таким образом, береговая линия является представителем класса объ-ектов, имеющих беcконечную длину в конечном пространстве.

К этому же классу относится це-лый ряд других парадоксальных объ-

-

Рис. ІІ.5. Последовательность построения триадной кривой Коха

Рис. ІІ.6. «Снежинка» Коха

Рис. ІІ.7. 11-е поколение «дракона» Хартера-Хейтуэя

ектов, описанных различными матема-

тиками.

В 1904 году шведский математик Хельг фон Кох следующим образом описал получение его триадной кривой (рис. ІІ.5), как составляющего элемента «снежинки» Коха (рис. ІІ.6).

В основу образования триадной кривой Кох положил последователь-ную замену элементов результата каж-дого преобразования или итерации одним и тем же элементом-генерато-ром этого преобразования в соответст-вующем масштабе.

Построение начинается с отрезка единичной длины или инициатора – это 0-е поколение будущей кривой Коха. В первом поколении этой кривой средняя треть инициатора заменяется на двух-звенную ломаную со звеньями, равны-ми 1/3 исходного отрезка. Полученная 4-хзвенная ломаная линия является генератором дальнейшего преобразо-вания.

В результате второй итерации воз-никает третье поколение кривой Коха в виде 16-звенной ломаной линии, полу-ченной заменой каждой из 4-х звеньев кривой второго поколения 4-хзвенным генератором в соответствующем мас-штабе.

Третья итерация порождает 4-е по-коление кривой Коха в виде 64-звенной ломаной линии, четвёртая – в виде 256-звенную ломаную, пятая – в виде 1024-звенную ломаную, звенья которой пра-ктически неразличимы и ло-маная превращается в кри-вую, к которой, однако, невоз-можно провести касательную.

Если принять исходный отрезок нулевого поколения за сторону равностороннего треугольника, то его последо-вательные итерации приве-дут к замкнутой фигуре под названием «снежинка» Коха (см. рис. ІІ.6). Эта фигура яв-ляется классическим примером линей-ного геометрического фрактала, как образца эстетики порядка, имеющего бесконечную длину как периметр фигу-ры, имеющей конечную площадь.

При этом она представляет собой

уже нечто большее, чем просто линия, но всё же это ещё не плоскость. «Она глубже одномерного объекта, но повер-хностнее двумерной формы» [24].

Другим представителем семейства геометрических линейных фракталов

Является «дракон» Хартера-Хейтуэя

(рис. ІІ.6). Его генератором принимает-ся равносторонний прямой угол, а за элемент 0-го поколения – единичный отрезок-инициатор постоянной длины.

В первом поколении единичный отрезок становится основанием прямо-угольного равнобедренного треугольни-ка, стороны которого являются эле-ментами генератора. Во втором поколе-нии катеты генератора выступают в роли инициатора инициатора и ста-новятся основаниями двух равнобед-ренных прямоугольных треугольников, катеты которых в следующей итерации становятся основаниями 4-х равно-бедренных прямоугольных треуголь-ников и т.д.

На рис. ІІ.6 показаны результаты 5 итераций и 11-е поколение линии, пос-троенной по этому принципу фигуры, называемой «драконом» Хартера-Хей-туэя.

Эта технология осуществима на компьютерах для получения изображе-ний деревьев, элементов рельефа, а также текстур поверхностей изображае-мых объектов.

Принцип бесконечного дробления и подобия мельчайших частиц целому иллюстрируют «салфетка» и «ковёр» Вацлава Серпинского (рис. ІІ.8, ІІ.9).

Рис. ІІ.8. 5 итераций равностороннего треугольника в «салфетку» Серпинского

Процесс получения «салфетки» Серпинского состоит из последователь-ного удаления срединных треугольни-ков из получаемых результатов после-дующих итераций. Так как этот процесс

может продолжаться бесконечно дол-го, то в итоге в исходном треугольнике-инициаторе не останется «живого мес-

Рис. ІІ.9. Неполная 4-я итерация ковра

Серпинского

Рис. ІІ.10. 8 итераций ветвления дерева

Рис. ІІ.11. Фрактальное .дерево,

смоделированное на компьютере

Рис. ІІ.12. Асимметричное фрактальное компьтерное дерево

та», но и на части он не распадется. Получится треугольный «сыр», состоя-щий из одних дырок.

Ковер Серпинского имеет тот же принцип образования, что и салфетка Серпинского. Инициатором выступает исходный квадрат, который разбива-ется на 9 конгруэнтных квадратов. В качестве генератора принимается ква-драт, который по площади в 9 раз меньше исходного.

1-я итерация заключается в удале-нии среднего из 9 конгруэнтных квадра-тов, 2-я - в удалении средних квадратов в 8-ми, оставшихся после 1-й итерации,

3-я -- в удалении средних квадратов в 64-х, на которые разбиваются 8 квад-ратов, оставшихся после 2-й итерации,

4-я -- в удалении средних квадратов в 576 квадратах, на которые разбиваются 64 квадрата, оставшихся после 3-ей итерации и т.д.

На рис. ІІ.9 показаны удалёнными 256 средних квадратов из 576, получен-ных после 4-й итерации. Поэтому она неполная.

Процесс последовательных итера-ций может продолжаться до бесконеч-ности и в итоге исходный квадрат пре-вратится во фрактальный ковер Серпи-нского как кусок сыра, состоящий из од-них дырок.

Мир природы устроен по такому же принципу. В нем все до бесконечности дробится на части, приблизительно по-добные целому, ибо реальность фрак-тальна.

Во фрактальной структуре любая произвольная точка может быть точкой ветвления (рис. ІІ.10 -- ІІ.12).

На рис. ІІ.11 показано фрактальное дерево, созданное с помощью компью-тера английским ученым Майклом Бэт-ти. Каждая ветка последовательно раз-ветвляется на две, чтобы в итоге полу-чить купольную крону. На рисунке сле-ва представлен итог 6-ти итераций, а справа – тринадцати.

Итак, линейные фракталы – это ге-

ометрические фигуры, обладающие, как системы, следующими свойствами:

1.Иерархичностью строения.

Имеют бесконечное множество подсистем как результатов последова-тельных итераций, в пределах каждой из которых их элементы конгруэнтны, а

в пределах различных подсистем – самоподобны;

2. Изоморфностью структур раз-ных подсистем, так как их элементы имеют одинаковую форму, но разный размер или масштаб, ибо являются ре-зультатами последовательных взаим-ных преобразований подобия;

3.Конструктивной изломанностью

конечного результата, в котором точки излома являются границами перехода между подсистемами как результатами последовательных итераций.

4. Недифференцируемостью.

Каждый отдельно взятый результат итерации имеет вполне эвклидову ст-руктуру, так как их соответственные прямолинейные элементы вступают в связи конкурентности и отношения па-ралельности, конгруэнтности и осевой симметричности. Преобразование са-моподобия также является евклидо-вым. Отсюда следует, что структура ли-нейных геометрических фракталов опи-сываются аксиоматикой евклидовой ге-ометрии. Поэтому их можно было бы считать фигурами евклидовой геоме-трии, но только в том случае, когда их размерность была бы целочисленной. Но их способность дробиться на беско-нечное число самоподобных, но взаи-мносвязанных элементов, определяет их размерность как дробную или фрак-тальную.

Значение эвклидовой размерности элементов эвклидова пространства за-висит от значений трёх его измерений по трём взаимно-перпендикулярным направлениям, отличных от нуля. От-сюда точка нульмерна так как её длина, ширина и высота равны нулю, линия одномерна, так как она имеет только длину, отличную от нуля, плоскость или поверхность двумерна, так как она имеет длину и ширину, отличные от нуля, и, наконец, геометрические тела как части пространства, ограниченные поверхностями -трехмерны, так как все три их измерения отличны от нуля.

Если взять в качестве единицы из-мерения мерный отрезок u и измерить им отрезок прямой L без остатка, то чи-

сло N отрезков u в L будет равно (L/u)1.

В квадрате со сторонами L уложится N

квадратов со сторонами u, равное (L/u)2

В кубе со сторонами L уложится (L/u)3

Рис. ІІ.13. 5 итераций «пыли» Кантора

Рис. ІІ.14. Колбаса Миньковского

Рис. ІІ.15. Отель Гильберта

кубиков со сторонами u. Отсюда видно,

что размерности отрезка, квадрата и ку-ба определяются целочисленными по-казателями их степеней, совпадающи-ми со значениями пространственной или топологической мерности, не зави-сящими от размера единицы измере-ния u., т.е., в общем виде:

N=( L/u) D , где Dпоказатель мерности.

Если прологарифмировать это вы-ражение по любому основанию, то по-лучим ln N= ln( L/u)D, или ln N=D ln( L/u), откуда

D= ln N / ln( L/u) (1)

Рассмотрим определение размер-ности фрактального объекта под назва-нием «пыль Кантора» (рис. ІІ.13). Кан-тор получил свою «пыль», разделив от-резок – инициатор на 3 равные части и удалив из него его среднюю треть.

С оставшимися двумя третями он по-ступил точно так же, удалив их средние трети. Этот процесс удаления средней трети у получаемых результатов после-дующих итераций он продолжил до бесконечности и в итоге получил бес-численное множество «микроотрез-ков», как бы не имеющих длины, полу-чившим название «пыли Кантора». Определение её размерности модели-рует процесс её получения.

После первой итерации получилось 2 отрезка длиной по 1/3, после второй итерации – 2 отрезка длиной по 1/9, по-сле третьей – 8 отрезков длиной 1/ 27 и т.д., а после n-й итерации число N отрезков оказывается равным 2n, а дли-на каждого отрезка – u = L / 3 n.

Тогда мерность «пыли» определя-ется по формуле 1 следующим обра-зом:

D= ln 2n / ( ln L/ L / 3 n.) = ln 2n/ ln3 n =

= n ln2 / n ln3 = ln2/ln3=0,63.

Таким образом, «пыль» Кантора, ко-торая уже не линия, но еще не точка, имеет дробную размерность, заключен-ную между 0 (размерность точки) и 1 (размерностью линии).

Аналогично рассуждая, можно пре-

дположить существование плоских объ-

ектов с размерностью между 1 и 2, а объёмных – с размерностью между 2 и 3. Так, размерность триадной линии Коха равна 1, 2618, а ковра Серпинско-го – 1,58.

Идея о дробной размерности поя-

вилась в начале ХХ века в трудах не-мецкого математика Феликса Хаусдор-фа, которую позже развил русский ма-тематик А.С.Безикович. Поэтому фрак-тальную размерность называют еще размерностью Хаусдорфа-Безиковича.

В отличие от дробной целочисленную размерность называют топологической.

Фрактальная размерность являет-ся топологическим инвариантом фрак-тальной структуры, особым видом сим-метрии – как бы симметрии фрактала относительно масштаба.

Если каждая сколь угодно малая часть фрактальной линии является уменьшенной копией всей линии, то это значит, что она состоит не из точек, а из функций. Но в этом случае она уже не линия в евклидовом смысле, име-ющая только длину, а некоторая «ши-рокая линия», имеющая некоторую площадь. Другими словами, фракта-льная линия уже не одномерная эвкли-дова линия, но еще и не двумерная плоская фигура, так как она имеет дро-бную размерность больше единицы, но меньше двух.

Чем более изломана фрактальная линия, тем ближе её размерность к 2. В частности, фрактальная размерность береговой линии Норвегии равна 1,5, а Великобритании -1,3. В свою очередь, фрактальная поверхность – это уже не поверхность размерности 2, но еще не объёмное тело размерности 3, а это некая «вспененная» поверхность дро-бной размерности более двух, но менее трёх. Примером может служить облако, которое нельзя назвать телом, имею-щим свою поверхность, а можно наз-вать частью пространства, размерно-сть которой более двух, но менее трёх.

Дробные размерности позволяют вычислять характеристики объектов, которые не могут быть чётко определе-ны иным путём: степень шероховатости поверхности, прерывистости и неустой-чивости какого-либо процесса.

Класс линейных геометрических

фракталов довольно широк в силу их простоты, определяемой прямолиней-ностью элементов (рис.ІІ.1-ІІ.16).

Герман Миньковский сконструировал

фрактал из непростых ломаных линий

Рис. ІІ.16. 4 итерации фрактала «Золотая звезла» И.Тугого

Рис. ІІ.17. 3-я неполная итерация фрактала «Коробка» И.Тугого

Рис. ІІ.18. 5 итераций тригонального дихотомического фрактала

инициатора и генератора, поче-му-то названный «колбасой» [120]. Фрактальная размерность колбасы Миньковского - ln 8/ln 4 = 1,5. (рис. ІІ.14).

Давид Гильберт предложил свой фрактал, похожий на лаби-ринт и названный «отелем» Ги-льберта. Он имеет фракталь-ную размерность, равную 2,0, так как при бесконечном коли-честве итераций займёт всю плоскость (рис.ІІ.15).

Красиво выглядит пента-граммный фрактал «Золотая звезда» Автор–Иван Тугой.[120]. (рис. ІІ.16). Здесь инициатором выступает исход-ная пентаграмма, которая, как изве-стно, содержит золотую пропорцию. Поэтому метрика последовательных итераций выдержана в этой пропорции и фрактал является золотым. Фрак-тальная размерность 1,618.

Фрактал «Коробка» образуется прибавлением квадратов к вершинам других квадратов. Инициатором высту-пает центральный квадрат (рис.ІІ.17). Генератор, конгруэнтный инициатору, формирует диагональную структуру фрактала путем преобразования сдви-га, а не подобия. На рис. ІІ. 17 приве-ден результат 3-й неполной итерации.

Если в качестве инициатора взять равносторонний треугольник, то, при-нимая для после-дующих итера-ций стороны но-вых треугольни-ков, вдвое мень-шие предыдущих, получим новый линейный фрак-тал, получивший название тригона-льного, так как он состоит из само-подобных равно-сторонних треуго-льников и дихото-мического, так как стороны последу-ющих треугольни-ков вдвое меньше предыдущих.

Все рассмотренные линейные фра-кталы, как графические конструкции, являются плоскими. Но если полагать, что всякая плоская фигура является, допустим, ортогональной проекцией не-которого объекта, находящегося в про-странстве, то можно говорить о суще-ствовании объёмных фрактальных фи-гур.

Одним из представителей этих об-ъектов является губка Менгера [13](рис. ІІ.19). Она получена из ковра Серпинс-кого добавлением третьего измерения.

Рис. ІІ.19. Губка Менгера ( 3-я итерация объемного ковра Серпинского )

Рис. ІІ.20. Внутренняя фрактальная область губки Менгера

Фрактальная размерность губки Менгера меньше трёх, но больше двух, представляет собой «вырожденный» объём, который обладает бесконечной площадью своих пор и равна 2,727.

Изучая фрактальность природы, Мандельброт делает вывод о неупо-рядоченности и нестабильности её

форм, которые не зависят от масштаба [24].

Изучая свойства физических фрак-

тальных объектов, учёные приходят к

выводам, что, в сравнении с общеизве-

стным свойствами обычных объектов

они иначе рассеивают электромагнит-

Рис. ІІ.21. Аттрактор Лоренца

Рис. ІІ.22. Примеры множеств Жюлиа

Рис. ІІ.23. Фрактал Мандельброта

ное излучение, по другому колеблются

и звучат, иначе проводят электриче-ство, в них по иному происходит диф-фузия вещества. Аналитические мето-ды в теории фракталов, основанные на математическом аппарате интеродиф-фиренцирования дробного порядка, по-зволяют наиболее тонко и тщательно исследовать фрактальные функции в физике.

Как ни парадоксально, открытие фрактальных множеств раскрыло при-роду непрогнозируемых процессов и научило человека ими управлять. Ста-новится понятным, почему мир проис-ходит из хаоса. Понятие детерминиро-

ванного хаоса соединило невозмож-ное: сняло противоречие между хао-сом и порядком, вывело науку на но-вый уровень понимания природных процессов и форм.

Изучение фракталов и детермини-рованного хаоса меняет привычные представления людей об окружающем мире и вместе с тем помогает постичь этот мир в его развитии.