Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsia_9_Zh.doc
Скачиваний:
21
Добавлен:
13.02.2016
Размер:
922.62 Кб
Скачать

Лекция 9.

Основные характеристики электрического поля. Электрический диполь. Поле диполя. Диполь в электрическом поле. Первичные механизмы воздействия электростатических полей на биологические объекты. Применение постоянных электрических полей в физиотерапии. Физические основы электрографии тканей и органов. Электрокардиография. Дипольный эквивалентный электрический генератор сердца. Теория отведений Эйнтховена. Понятие о мультипольном эквивалентном электрическом генераторе сердца. Электрокардиограф.

Электрическое поле

Электрическое поле есть разновидность материи, посредством которой осуществляется силовое воздействие на электрические заряды, находящиеся в этом поле Характе­ристики электрического поля, которое генерируется биологическими структурами, являются источником информации о состоянии организма

12.1. Напряженность и потенциал — характеристики электрического поля

Силовой характеристикой электрического поля является напряженность, равная отношению силы, действующей в данной точке поля на точечный заряд, к этому заряду

(12.1)

Напряженность — вектор, направление которого совпадает с направлением силы, действующей в данной точке поля на положительный точечный заряд.

Напряженность электрического поля в произвольных точках аналитически задается следующими тремя уравнениями:

Ех = f1(x, у, z); Еу = f2(х, у, z); Ez = f3(x, у, z), (12.2)

где Ех, Еу и Ez — проекции вектора напряженности на соответствующие координатные оси, введенные для описания поля. Электрическое поле графически удобно представлять силовыми линиями, касательные к которым совпадают с направлением вектора напряженности в соответствующих точках поля.

Обычно эти линии проводят с такой густотой, чтобы число линий, проходящих сквозь единичную площадку, перпендикулярную им, было пропорционально значению напряженности электрического поля в месте расположения площадки.

Представим себе, что зарядq перемещается в электрическом поле по траектории 1-а-2 (рис. 12.1). Силы поля при этом совершают работу, которую можно выразить через напряженность [см. (12.1)]:

(12.3)

где dl — элементарное перемещение; El — проекция вектора на направление . Покажем, чторабота сил электростатического поля (электрического поля неподвижных зарядов) не зависит от траектории, по которой перемещается заряд в этом поле. Поля, обладающие таким свойством, называют потенциальными.

Пусть заряд q переместился по замкнутой траектории 1-а-2-б-1 (рис. 12.1). Так как поле электростатическое, то положение зарядов, создающих поле, при этом не изменилось, и потенциальная энергия, зависящая от их взаимного положения, осталась прежней. Поэтому работа сил электростатического поля по переме­щению заряда по замкнутой траектории равна нулю:

(12.4)

Так как силы, действующие на заряд q, определяются его положением в поле, то выражения для работ сил поля при перемещении заряда по одной и той же траектории в противоположных направлениях отличаются только знаком:

(по б) (по б)

Подстановка этого выраже­ния в (12.4)дает

(12.5)

Равенство (12.5) означает, что работа сил электростатического поля не зависит от траектории заряда, а зависит от величины заряда, положения начальной и конечной точек траектории и от напряженности поля.

На основании этого свойства вводят понятие разности потенциалов , которая для электростатического поля равна напряжению U.

Разностью потенциалов между точками поля называют отношение работы, совершаемой силами поля при перемеще­нии точечного положительного заряда из одной точки поля в другую, к этому заряду:

(12.6)

где 1 и 2 — потенциалы в точках 1 и 2 электрического поля, U12 — напряжение между этими точками. Разность потенциалов между двумя точками зависит от положения выбранных точек и от на­пряженности электрического поля, как следует из (12.6).

Наряду с разностью потенциалов в качестве характеристики электрического поля используют понятие потенциала. Однако для данной точки поля оно имеет однозначный смысл только в том случае, если задан потенциал какой-либо произвольной точки поля. На практике принято считать, что потенциал проводников, соединенных с землей, или потенциал шасси, на котором смонти­ровано радиоустройство (и в том и в другом случаях говорят о за­землении), равны нулю. В теоретических задачах обычно считают равным нулю потенциал бесконечно удаленных точек.

Вычислим потенциал поля точечного заряда, расположенного воднородном изотропном диэлектрике с диэлектрической проницаемостью (рис. 12.2). Пусть точки 1 и 2 находятся на одной силовой линии ни расстояниях соответственноr1иr2от источника поля —заряда Q. Проинтегрируем выражение (12.6) по отрезку 12, учитывая, что в соответствии с законом Кулона (для точечного заряда) Еl = E = Q/(4 0r2) и dr = dl:

(12.7)

где 0  8,85 • 10 12 Ф/м — электрическая постоянная1.

(1 Размерность электрической постоянной 0 выражается также в виде , что следует из закона Кулона).

Предположим, что потенциал в бесконечно удаленной точке равен нулю: 2 0 при r2  . Тогда из (12.7) получаем

или в более общем виде (12.8)

Могли быть и другие предположения относительно значения потенциала в бесконечно удаленной точке, однако сделанное выше допущение привело к наиболее простому выражению (12.8), по которому обычно и вычисляют потенциал поля точечного заряда.

Потенциалы электрического поля в различных точках наглядно можно представить в видеповерхностей одинакового потенциала (эквипотенциальных поверхностей). Обычно проводят экви­потенциальные поверхности, отличающиеся от соседних на одно ито же значение потенциала. На рис. 12.3 изображены эквипотенциальные поверхности (штриховые линии) и силовые линии (сплошные) поля двух разноименных одинаковых точечных зарядов.

Аналитически зависимость электрического потенциала от координат в разных точках поля задается некоторой функцией координат

 = f(x, у, г), (12.9)

которая в частных случаях может иметь, например, вид (12.8). Так как напряженность электрического поля определяется через силу, а потенциал — через работу сил поля, то эти характеристики связаны между собой аналогично силе и работе. Интегральная зависимость напряженности поля и потенциала дается формулой (12.6) или выражением

(12.10)

Здесь с учетом знака «-» изменены пределы интегрирования: верхнему пределу интеграла соответствует в левой части уменьшаемое 2, нижнему — вычитаемое1.

Получим дифференциальную связь между Е и.Предположим, что точки 2 и 1 расположены сколь угодно близко, тогда из (12.10) получим

(12.11)

Производная от потенциала по направлению d/dlхарактеризует отношение приращения потенциала d к соответствующему расстояниюdl в некотором направленииl;Еl — проекция вектора на это направление.

Смысл формулы (12.11) виден из рис. 12.4. В точке 0 проведенвектор , который спроецирован на направления l1, l2 и l3. Эти проекции по модулю равны производным от потенциала по соответствующим направлениям: d/dl1, d/dl2, d/dl3.Наиболь­шее изменение потенциала, приходящееся на единицу длины, происходит вдоль прямой, совпадающей с ; знак «минус» в (12.11) означает, что потенциал быстрее всего убывает в направлении и быстрее всеговозрастает в направлении -Е. Можно сказать, что вектор равен взятому с обратным знаком градиентупотенциала:

(12.12)

В направлении, перпендикулярном силовой линии, имеем

(12.13)

Из этого следует, что силовые линии и эквипотенциальные поверхности взаимно перпендикулярны. Если поле однородно, например поле плоского конденсатора, то из формулы (12.6) находим что для двух точек, расположенных на одной силовой линии на расстоянииl,

(12.14)

Учитывая (12.11) и (12.9), можно записать проекции вектора напряженности электрического поля по трем координатным осям:

(12.15)

Тогда напряженность определяют по формуле

(12.16)

Если поле создано N точечными зарядами, то напряженность в некоторой точке можно вычислить как векторную сумму напряженностей полей, создаваемых в этой точке каждым зарядом отдельно (принцип суперпозиции):

(12.17)

а электрический потенциал в этой точке — как алгебраическую сумму потенциалов от каждого заряда, предполагая, что потенциал бесконечно удаленных точек равен нулю:

(12.18)

Существующие электроизмерительные приборы рассчитаны на измерение разности потенциалов, а не напряженности. Ее можно найти из этих измерений, используя связь и .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]