Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Химический канцерогенез

.doc
Скачиваний:
100
Добавлен:
13.02.2016
Размер:
159.23 Кб
Скачать

Химический канцерогенез — сложный многоступенчатый процесс образования опухоли, происходящий под длительным воздействием химических веществ — канцерогенов, в основе которого лежит поражение генов и эпигенетические изменения.

Химические канцерогены ответственны за возникновение до 80-90 % всех злокачественных опухолей человека.

Химический канцерогенез у человека был впервые описан J.Hill, наблюдавшим развитие полипоза слизистой оболочки носа у людей, вдыхавших чрезмерные количества лекарств. Sir Percival Patt (1775) первый дал описание рака мошонки у трубочистов. С тех пор описано более 1000 химических канцерогенных веществ, из которых только 20, как было доказано, инициируют опухоли человека. Хотя основные исследования в области химического канцерогенеза проводятся на лабораторных животных и в клеточных культурах, тем не менее, есть наблюдения опухолей человека, развитие которых обусловлено воздействием химических канцерогенов. Яркими примерами могут служить профессиональные опухоли — рак мочевого пузыря у работающих с анилиновыми красителями, рак легкого у людей, контактирующих с асбестом, рак печени работников поливинилхлоридного производства и др. Канцерогенные агенты подразделяются на две большие группы: генотоксические и эпигенетические в зависимости от их способности взаимодействовать с ДНК. К генотоксическим канцерогенам относятся полициклические ароматические углеводороды, ароматические амины, нитрозосоединения и др. Эпигенетические химические канцерогены не дают положительных результатов в тестах на мутагенность, однако их введение вызывает развитие опухолей. Эпигенетические канцерогены представлены хлорорганическими соединениями, иммунодепрессантами и другими. В свою очередь часть генотоксических канцерогенов может напрямую взаимодействовать с ДНК, поэтому они называются прямыми. Другие же должны претерпеть химические превращения в клетках, в результате которых они становятся активными, приобретают электрофильность, могут концентрироваться в ядрах клеток и взаимодействовать с ДНК. Последний вид генотоксических канцерогенов называется непрямым. Активация непрямых генотоксических канцерогенов происходит с участием ряда ферментных систем клетки, таких как монооксигеназной ферментной системы, основным действующим компонентом которой является цитохром Р-450-гемопротеид, эпоксидгидратазы, а также трансферазы, катализирующих реакции конъюгации канцерогенных веществ. Активированные метаболиты реагируют с различными участками ДНК, вызывая алкилирование ее оснований — аденина, гуанина, цитидина и тимидина. Образование алкилгуанина может приводить к точковым мутациям в геноме клетки. Названные ферментные системы обнаружены в клетках печени, бронхиального, желудочного, кишечного и почечного эпителия. Происхождение химических канцерогенов может быть экзо- и эндогенным. Известными эндогенными канцерогенами считаются холестерин, желчные кислоты, аминокислота триптофан, некоторые стероидные гормоны, перекиси липидов. Накоплению эндогенных канцерогенов в организме могут способствовать некоторые заболевания, а также хронические гипоксические состояния.

Механизмы действия основных классов химических канцерогенов.

Полициклические ароматические углеводороды

Бензо[α]пирен – типичный пример соединения, которое может участвовать в

обмене веществ на разных стадиях. Это пятикольцевое соединение имеет 11 участков гидроксилирования и 4 участка образования диолов. Так же могут образовываться хиноны.

Один из наиболее активных метаболитов БП 7,8-дигидродиол-9,10 эпоксид взаимодействует с ДНК с образованием аддукта.

Нитрозоамины

Важность нитрозоаминов как объекта токсикологии стала очевидной в 1950-е годы, когда было показано, что диметилнитрозамин, промышленный растворитель, способен вызывать повреждение печени у машинистов. В 1960-е годы были зарегистрированы множественные случаи отравления овец, связанные с образованием в их пище, обогащенной рыбой (содержащей высокое количество аминов), нитрозаминов. Вскоре было показано, что

нитрозамины являются мощными канцерогенами для животных. Было изучено около 300 нитрозаминов, из которых 90% проявляли канцерогенные свойства. Все протестированные виды, включая лабораторных животных и обезьян, оказались восприимчивыми к нитрозаминам. Все это явилось предпосылкой для их тщательного изучения.

Нитрозоамины используемые в различных областях промышленности, представлены во множестве потребительских товаров (напитки, косметика, табачные изделия). По мере изучения многих стадий образования нитрозоаминов были предприняты шаги для уменьшения степени риска,

например, путем использования альтернативных промышленных процессов. Нитрозоамины формируются и эндогенно, из аминов и нитратов (или нитритов), содержащихся в нашей пище. Ограничение нитратов и нитритов приводит к значительному снижению уровня нитрозаминов. Нитрозамины быстро формируются из вторичных аминов и азотистой кислоты, а соответствующие N-нитрозосоединения - из первичных аминов. Донором нитрогруппы является ангидрид азотистой кислоты. Поэтому скорость прямой реакции пропорциональна квадрату концентрации азотистой кислоты. Скорость реакции зависит от концентрации вторичных аминов, квадрата концентрации азотистой группы и константы, связанной с рН. Скорость реакции увеличивается в кислых условиях (после превращения нитрита в азотистую кислоту), но амины активны в депротонированной форме, которая преобладает при высоких рН. В результате для многих аминов оптимальным является рН 2-4, близкий к рН желудка.

Одной из наиболее опасных реакций, которой подвергаются нитрозамины, является гидроксилирование по α-углероду (следующему за функциональной группой N-NO). В результате образуется нестабильный продукт, который подвергается спонтанному распаду с образованием альдегидов (по сайту гидроксилирования), алкилирующих агентов (где активным является негидроксилированный α-углерод), N2 и –ОН. Алкилирующие агенты могут

реагировать с гидроксидами (или водой) или глютатиономи, таким образом, происходит их детоксикация. Однако их реакции с ДНК часто лежат в основе канцерогенных эффектов у животных. Известно, что человеческий организм способен метаболизировать нитрозамины путем α-гидроксилирования. Следовательно, нет оснований надеяться, что человек нечувствителен к нитрозаминам как к канцерогенам.

Ароматические амины

Этот класс канцерогенов является достаточно хорошо изученным.

Токсичность ариламинов в основном обусловлена их гидроксилированием. При естественном уровне ариламинов их гидроксилирование не представляет угрозы для организма, тогда как люди, получающие дозы ариламина, превышающие критический уровень

(несколько грамм), ежедневно составляют группу риска с возможностью появления рака почек через несколько лет.

Первое прямое доказательство, что метаболиты канцерогена являются более

канцерогенными, чем исходная молекула, было продемонстрировано учеными Миллер на примере 2-флуоренилацетамида. Они показали, что N-гидроксилированный метаболит этого канцерогена обладал гораздо более высоким канцерогенным потенциалом, чем 2-флуоренилацетамид и гидроксилированные по кольцу метаболиты. К настоящему времени общепринято считать, что N-гидроксилирование широкого круга канцерогенных N-замещенных ароматических соединений является путем активации этих соединений.

Афлатоксин В1

Афлатоксины – ядовитые вещества, вырабатываемые плесневыми грибами, главным образом Aspergillus, оказывают токсическое действие на печень некоторых видов млекопитающих, птиц, рыб. Афлатоксин В1 – продукт жизнедеятельности плесневого гриба Aspergillus flavus, который размножается на зерне при высокой влажности и теплых условиях. Это вещество считается одним из факторов гепатоцеллюлярной карциномы

человека - опухоли, появляющейся с большой частотой в некоторых регионах земного шара (Китай, Мозамбик, Сенегал, Мексика). Географические вариации появления этой болезни коррелировали с различиями в экспозиции некоторыми потенциальными этиологическими

агентами, такими как вирус гепатита В, химические канцерогены, включая пищевые микотоксины, а также алкогольный цирроз печени, причем хроническая инфекция вирусом гепатита В и экспозиция афлатоксином В1 представляют синергический фактор риска.

Недавно была показана мутация в 249 кодоне гена р53 в клетках гепатоцеллюлярной карциномы человека, вызванной приемом пищи, содержащей афлатоксин В1, причем частота этой мутации составляла около 50%. Эта мутация была обнаружена и в образцах печени здоровых людей, проживающих в областях с повышенным содержанием этого токсина, из чего был сделан вывод о том, что данное молекулярное событие возникает на ранних стадиях развития гепатоцеллюлярной карциномы. Было также доказано, что развитие цитотоксических и генотоксических эффектов афлатоксина В1 происходит лишь после его биоактивации цитохромом Р450. Некоторые цитохромы Р450 человека, такие как CYP1A2, CYP 2A6, CYP2B6 и CYP3A4 метаболизируют этот токсин в реакции эпоксидирования двойной связи терминального фуранового кольца, в результате чего образуется электрофильный метаболит, способный алкилировать нуклеиновые

кислоты.

Гетероциклические амины

Метод Эймса, предложенный в 1970-х, несмотря на свои значительные ограничения, обеспечил быстрый и недорогой способ анализа уровня канцерогенности химических веществ без вовлечения лабораторных животных и позволил увеличить скорость их очистки. Так, были довольно быстро протестированы компоненты табачного дыма и доказан их мутагенный эффект для бактерий. Далее был исследован дым, образующийся при приготовлении мяса, который также оказался сильным мутагеном. До этого, в 1939, было показано, что органические соединения, образующиеся в процессе жаренья лошадиного мяса, вызывают у мышей рак молочной железы, предположительно за счет формирования при этом ПАУ. В 1970-х эти исследования были продолжены. Появилось предположение, что источником канцерогенных агентов являются не ПАУ, а аминокислоты и белки, содержащиеся в мясе. При изучении этих компонентов был идентифицирован класс мутагенных гетероциклических аминов. Например, сильными мутагенами являются образующиеся изтриптофана агенты Trp-P-1 и Trp-P-2. Это послужило поводом для тщательного систематического изучения всех аминокислот. Гетероциклические амины образуются при пиролизе аминокислот, содержащихся в белках.

Другой важный класс мутагенов был идентифицирован при изучении смеси

аминокислот с креатинином и моносахаридами. Эти ингридиенты содержатся в сыром мясе и гораздо более эффективны в комбинации, чем поодиночке, в отношении появления мутагенных

свойств при приготовлении пищи. Для образования мутагенов критичной является температура приготовления пищи. Так, например, для формирования Trp-P-1 и Trp-P-2 требуются более высокие температуры, чем для дериватов фенилаланина, поэтому последние более широко распространены в США. Для снижения риска представляется возможным

ограничение хорошо приготовленного и прожаренного мяса в пище.

В неметаболизированном виде гетероциклические амины не активны, не проявляют мутагенных и канцерогенных свойств. Их активация происходит при гидроксилировании аминогруппы. Гидроксиламин в некоторых случаях нестабилен и теряет воду с образованием активного иона, способного формировать аддукты с макромолекулами, такими, как ДНК и белки. Чаще гидроксиламин подвергается конъюгации с сульфатом или ацетатом. Такие

конъюгаты подвергаются выведению из организма. Тканевая специфичность действия гетероциклических аминов связана, таким образом, с ферментами 1 фазы (гидроксилирование) и 2 фазы (конъюгация) метаболизма ксенобиотиков и с ферментами системы репарации ДНК. В клетке существует несколько ферментных путей, ответственных за превращение нитрогруппы в аминогруппу. Например, нитрогруппа может быть последовательно превращена в нитрозо, затем гидроксиламин и, наконец, в амины.

Гетероциклические амины являются субстратами для цитохрома Р450 (главным образом для CYP1A2). Они подвергаются N–деалкилированию (вслучае содержания N-алкильных групп) или N-гидроксилированию экзо-аминогрупп с образованием арилгидроксиаминов.

Последние могут далее подвергаться действию N,O-ацетил- трансфераз или

сульфотрансфераз. В результате образуются высокоактивные N-ацетокси- и N-сульфо-эфиры, которые образуют аддукты с ДНК.

Эпидемиологические исследования показали строгую корреляцию между факторами питания и возникновением рака, причем некоторые сообщения предполагают взаимосвязь между потреблением пережаренного мяса и определенными типами рака человека.

Химический канцерогенез

Химический канцерогенез имеет многоступенчатый характер и протекает в несколько стадий: инициации, промоции и прогрессии опухоли (схема). Каждая из стадий требует специальных этиологических факторов и отличается морфологическими проявлениями. В стадию инициации происходит взаимодействие генотоксического канцерогена с геномом клетки, что вызывает его перестройки. Однако для злокачественной трансформации этого недостаточно. Последняя обеспечивается действием еще одного повреждающего

агента, вызывающего дополнительные перестройки в геноме. Клетка малигнизируется, начинает бесконтрольно делиться. Вещество, используемое на 2-й стадии, называется промотором. В качестве промоторов нередко выступают эпигенетические канцерогены, а также вещества, не являющиеся сами по себе канцерогенами.

Эффект химических канцерогенов зависит от длительности введения и дозы, хотя и нет пороговой минимальной дозы, когда канцерогенный агент может считаться безопасным. Инициация является необратимым процессом. Кроме того, эффект от действия различных химических канцерогенов может суммироваться. Резюмируя данные по химическому канцерогенезу, следует подчеркнуть, что для реализации своего действия химические канцерогены должны воздействовать на ядерную ДНК и вызвать ее повреждения.

Министерство здравоохранения Республики Беларусь

Учреждение образования

«Гомельский государственный медицинский университет»

Кафедра биологической химии

Реферат на тему:

Химический канцерогенез. Основные химические канцерогены.

Подготовила студентка

6 курса лечебного факультета 16 группы

Казючиц Юлия Игоревна

Гомель,2015

1. Канцерогенез. Под редакцией Д. Г. Заридзе. — М.: Медицина, 574 с

2. Молекулярная онкология Полициклические ароматические углеводороды

3. Сейц И. Ф., Князев П. Г. — Молекулярная онкология: Руководство для врачей. — Л.: Медицина, 1986.- 352 с., ил.