Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лабораторная 11.doc
Скачиваний:
54
Добавлен:
13.02.2016
Размер:
927.23 Кб
Скачать

12.10. Электропроводимость биологических тканей и жидкостей при постоянном токе

Биологические ткани и органы являются довольно разнородными образованиями с различными электрическими сопротивлениями, которые могут изменяться при действии электрического тока. Это обусловливает трудности измерения электрического сопротивления живых биологических систем.

Электропроводимость отдельных участков организма, находящихся между электродами, наложенными непосредственно на поверхность тела, существенно зависит от сопротивления кожи и подкожных слоев. Внутри организма ток распространяется в основном по кровеносным и лимфатическим сосудам, мышцам, оболочкам нервных стволов. Сопротивление кожи, в свою очередь, определяется ее состоянием: толщиной, возрастом, влажностью и т. п.

Электропроводимость тканей и органов зависит от их функционального состояния и, следовательно, может быть использована как диагностический показатель. Так, например, при воспалении, когда клетки набухают, уменьшается сечение межклеточных соединений и увеличивается электрическое сопротивление; физиологические явления, вызывающие потливость, сопровождаются возрастанием электропроводимости кожи и т. д.

Приведем удельные сопротивления различных тканей и жидкостей организма (табл. 22).

Таблица 22

, Ом • м

, Ом • м

Спинномозговая жидкость

0,55

Ткань жировая

33,3

Кровь

1,66

Кожа сухая

105

Мышцы

2

Кость без надкостницы

107

Ткань мозговая и нервная

14,3

Физические процессы в тканях при воздействии током

и электромагнитными полями

Все вещества состоят из молекул, каждая из них является системой зарядов. Поэтому состояние тел существенно зависит от протекающих через них токов и от воздействующего электромагнитного поля. Электрические свойства биологических тел более сложны, чем свойства неживых объектов, ибо организм - это еще и совокупность ионов с переменной концентрацией в пространстве Первичный механизм воздействия токов и электромагнитных полей на организм — физический, он и рассматривается в главе применительно к медицинским лечебным методам

15.1. Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ

Человеческий организм в значительной степени состоит из биологических жидкостей, содержащих большое количество ионов, которые участвуют в различных обменных процессах.

Под влиянием электрического поля ионы движутся с разной скоростью и скапливаются около клеточных мембран, образуя встречное электрическое поле, называемое поляризационным. Таким образом, первичное действие постоянного тока связано с движением ионов, их разделением и изменением их концентрации в разных элементах тканей.

Закон Ома для биологического объекта следует записать:

,

где P(t) - э.д.с. поляризации, являющаяся функцией времени.

Воздействие постоянного тока на организм зависит от силы тока, поэтому весьма существенно электрическое сопротивление тканей и прежде всего кожи. Влага, пот значительно уменьшают сопротивление, что даже при небольшом напряжении может вызвать значительный ток через организм.

Непрерывный постоянный ток напряжением 60—80 В используют как лечебный метод физиотерапии (гальванизация).

Источником тока обычно служит двухполупериодный выпрямитель — аппарат для гальванизации. Применяют для этого электроды из листового свинца или станиоля толщиной 0,3—0,5 мм. Так как продукты электролиза раствора поваренной соли, содержащегося в тканях, вызывают прижигание, то между электродами и кожей помещают гидрофильные прокладки, смоченные, например, теплой водой.

Дозируют силу постоянного тока по показаниям миллиамперметра, при этом обязательно учитывают предельно допустимую плотность тока — 0,1 мА/см2.

Постоянный ток используют в лечебной практике также и для введения лекарственных веществ через кожу или слизистые оболочки. Этот метод получил название электрофореза лекарственных веществ.

Для этой цели поступают так же, как и при гальванизации, но прокладку активного электрода смачивают раствором соответствующего лекарственного вещества. Лекарство вводят с того полюса, зарядом которого оно обладает: анионы вводят с катода, катионы — с анода.

Введение лекарственных веществ с помощью постоянного тока хорошо иллюстрирует следующий опыт. Двум кроликам выбривают участки кожи на обоих боках и к выбритым местам прикрепляют фланелевые прослойки; одни из них смочены раствором азотнокислого стрихнина, другие — раствором поваренной соли (рис. 15.1). На фланель накладывают электроды и пропускают по цепи токсилой 50 мА. Спустя некоторое время Рис. 15.1 кролик, у которого стрихнин на аноде, погибает при типичных явлениях отравления этим веществом. Другой же кролик, у которого стрихнин на катоде, не погибает, но если изменить направление тока, то и он погибнет.

Гальванизацию и электрофорез лекарственных веществ можно осуществлять с помощью жидкостных электродов в виде ванн, в которые погружаются конечности пациента.