Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Test-Bank-for-Heizer-Operations-Management-9e

.pdf
Скачиваний:
14107
Добавлен:
17.02.2016
Размер:
4.12 Mб
Скачать

PROBLEMS

68.A waiting-line problem that cannot be modeled by standard distributions has been simulated. The table below shows the result of a Monte Carlo simulation. (Assume that the simulation began at 8:00 a.m. and there is only one server.)

Customer Number

Arrival Time

Service Time

Service Ends

1

8:06

2

8:08

2

8:07

10

8:18

3

8:12

10

8:28

4

8:24

11

8:39

5

8:30

5

8:44

a.What is the average waiting time in line?

b.What is the average time in the system?

(a) Waiting time is 0 + 1 + 6 + 4 + 9 = 20. Average waiting time is 20/5 = 4.0 min; (b) Total time in system is 2 + 11 + 16 + 15 + 14 = 58. Average time in system is 58/5 = 11.6 min. (Simulation of a queuing problem, moderate) {AACSB: Analytic Skills}

69.A distribution of service times at a waiting line shows that service takes 6 minutes 40 percent of the time, 7 minutes 30 percent of the time, 8 minutes 20 percent of the time, and 9 minutes 10 percent of the time. Prepare the probability distribution, the cumulative probability distribution, and the random number intervals for this problem.

Service time

Probability

Cumulative

Random number

 

 

probability

intervals

6

.40

.40

01-40

7

.30

.70

41-70

8

.20

.90

71-90

9

.10

1.00

91-00

(Simulation of a queuing problem, easy) {AACSB: Analytic Skills}

591

70.A warehouse manager needs to simulate the demand placed on a product that does not fit standard models. The concept being measured is "demand during lead time," where both lead time and daily demand are variable. The historical record for this product suggests the following probability distribution. Convert this distribution into random number intervals.

Demand during lead time

Probability

 

 

100

.02

 

 

120

.15

 

 

140

.25

 

 

160

.15

 

 

180

.13

 

 

200

.30

 

 

 

 

 

 

Demand during lead time

Probability

Cumulative

Random number

 

 

probability

intervals

100

.02

.02

01-02

120

.15

.17

03-17

140

.25

.42

18-42

160

.15

.57

43-57

180

.13

.70

58-70

200

.30

1.00

71-00

(Simulation and inventory analysis, moderate) {AACSB: Analytic Skills}

71.A distribution of service times at a waiting line shows that service takes 6 minutes 40 percent of the time, 7 minutes 30 percent of the time, 8 minutes 20 percent of the time, and 9 minutes 10 percent of the time. Prepare the probability distribution, the cumulative probability distribution, and the random number intervals for this problem. The first five random numbers are 37, 69, 53, 80, and 60. What is the average service time of this simulation run?

Service time

Probability

Cumulative

Random number

 

Simulation

 

 

probability

intervals

 

frequency

6

.40

.40

01-40

1

(37)

7

.30

.70

41-70

3

(69, 53, 60)

8

.20

.90

71-90

1

(80)

9

.10

1.00

91-00

0

 

The average service time is 1*6 + 3*7 + 1*8 = 35 / 5 = 7 minutes. (Simulation of a queuing problem, moderate) {AACSB: Analytic Skills}

72.A distribution of service times at a waiting line indicates that service takes 12 minutes 30 percent of the time and 14 minutes 70 percent of the time. Prepare the probability distribution, the cumulative probability distribution, and the random number intervals for this problem.

Service time

Probability

Cumulative

Random number

 

 

probability

intervals

12

.30

.30

01-30

14

.70

1.00

31-00

(Simulation of a queuing problem, easy) {AACSB: Analytic Skills}

592

73.

A distribution of service times at a waiting line indicates that service takes 12 minutes 30 percent

 

of the time and 14 minutes 70 percent of the time. Prepare the probability distribution, the

 

cumulative probability distribution, and the random number intervals for this problem. The first six

 

random numbers were 99, 29, 27, 75, 89, and 78. What is the average service time for this

 

simulation run?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Service time

Probability

 

Cumulative

 

 

Random number

 

Simulation

 

 

 

 

 

 

probability

 

 

intervals

 

frequency

 

 

12

 

.30

 

.30

 

 

01-30

 

 

2

(29, 27)

 

 

14

 

.70

 

1.00

 

 

31-00

 

 

4 (99, 75, 89, 78)

 

 

The average

service time is

2*12 + 4*14 = 80

 

/ 6 = 13.33 minutes. (Simulation of a queuing

 

problem, easy) {AACSB: Analytic Skills}

 

 

 

 

 

 

 

 

 

74.

Historical records on a certain product indicate the following behavior for demand. The data

 

represent the 300 days that the business was open during 2000. Convert these data into random

 

number intervals.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Demand in cases

Number of occurrences

 

 

 

 

 

 

 

 

 

 

7

 

 

52

 

 

 

 

 

 

 

 

 

 

 

8

 

 

9

 

 

 

 

 

 

 

 

 

 

 

9

 

 

14

 

 

 

 

 

 

 

 

 

 

 

10

 

 

39

 

 

 

 

 

 

 

 

 

 

 

11

 

 

72

 

 

 

 

 

 

 

 

 

 

 

12

 

 

102

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Demand in cases

Number of

 

Probability

 

Cumulative

 

Random number

 

 

 

occurrences

 

 

 

 

 

probability

 

intervals

 

7

 

 

52

 

.18

 

.18

 

01-18

 

8

 

 

9

 

.03

 

.21

 

19-21

 

9

 

 

14

 

.05

 

.26

 

22-26

 

10

 

 

39

 

.14

 

.40

 

27-40

 

11

 

 

72

 

.25

 

.65

 

41-65

 

12

 

 

102

 

.35

 

1.00

 

66-00

(Simulation and inventory analysis, moderate) {AACSB: Analytic Skills}

593

75.A small store is trying to determine if its current checkout system is adequate. Currently, there is only one cashier, so it is a single-channel, single-phase system. The store has collected information on the interarrival time, and service time distributions. They are represented in the tables below. Use the following two-digit random numbers given below to simulate 10 customers through the checkout system. What is the average time in line, and average time in system? (Set first arrival time to the interarrival time generated by first random number.)

Interarrival time

Probability

 

Service time

Probability

(minutes)

 

 

(minutes)

 

3

.25

 

1

.30

4

.25

 

2

.40

5

.30

 

3

.20

6

.20

 

4

.10

Random numbers for interarrival times: 07, 60, 77, 49, 76, 95, 51, 16, 14, 85

 

 

 

Random numbers of service times:

57, 17, 36, 72, 85, 31, 44, 30, 26, 09

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interarrival

 

Probability

RN

 

Service time

 

Probability

 

 

RN

time (minutes)

 

 

 

assignment

 

(minutes)

 

 

 

 

 

assignment

3

 

.25

 

01-25

 

 

1

 

 

.30

 

 

 

01-30

4

 

.25

 

26-50

 

 

2

 

 

.40

 

 

 

31-70

5

 

.30

 

51-80

 

 

3

 

 

.20

 

 

 

71-90

6

 

.20

 

81-00

 

 

4

 

 

.10

 

 

 

91-00

 

 

 

 

 

 

 

 

 

 

 

 

 

Customer

RN

Interarrival

Arrival

Service

 

RN

Service

 

Service

 

Time

Time

number

 

 

time

 

time

 

begins

 

 

time

 

ends

 

in

in

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

line

System

1

07

 

3

 

3

 

3

 

 

57

2

 

 

5

 

0

2

2

60

 

5

 

5

 

5

 

 

17

1

 

 

6

 

0

1

3

77

 

5

 

10

 

10

 

36

2

 

 

12

 

0

2

4

49

 

4

 

14

 

14

 

72

3

 

 

17

 

0

3

5

76

 

5

 

19

 

19

 

85

3

 

 

22

 

0

3

6

95

 

6

 

25

 

25

 

31

2

 

 

27

 

0

2

7

51

 

5

 

30

 

30

 

44

2

 

 

32

 

0

2

8

16

 

1

 

31

 

32

 

30

1

 

 

33

 

1

2

9

14

 

1

 

32

 

33

 

26

1

 

 

34

 

1

2

10

85

 

6

 

38

 

38

 

09

1

 

 

39

 

0

1

Average time in line = 2/10 = 0.2 minutes; Average time in system = 20/10 = 2.0 minutes. (Simulation of a queuing problem, moderate) {AACSB: Analytic Skills}

594

76.Sam's hardware store has an order policy of ordering 12 gallons of a specific primer whenever 7 gallons are on hand. The store would like to see how well their policy works. Assume that beginning inventory in period 1 is 10 units, that orders are placed at the end of the week to be received one week later. (In other words, if an order is placed at the end of week one, it is available at the beginning of week 3.) Assume that if inventory is not on hand, it will result in a lost sale. The weekly demand distribution obtained from past sales is found in the table below. Also, use the random numbers that are provided and simulate 10 weeks worth of sales. How many sales are lost?

Weekly sales

Probability

 

 

 

 

 

 

 

 

 

3

 

 

.20

 

 

 

 

 

 

 

 

 

4

 

 

.30

 

 

 

 

 

 

 

 

 

5

 

 

.20

 

 

 

 

 

 

 

 

 

6

 

 

.20

 

 

 

 

 

 

 

 

 

7

 

 

.10

 

 

 

 

 

 

 

 

 

Random numbers for sales: 37, 60, 79, 21, 85, 71, 48, 39, 31, 35

 

 

 

 

 

 

 

 

 

 

 

 

Weekly sales

Probability

 

RN

 

 

 

 

 

 

 

 

 

 

assignment

 

 

 

 

3

 

 

.20

 

 

01-20

 

 

 

 

 

4

 

 

.30

 

 

21-50

 

 

 

 

 

5

 

 

.20

 

 

51-70

 

 

 

 

 

6

 

 

.20

 

 

71-90

 

 

 

 

 

7

 

 

.10

 

 

91-00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Week

Order

Beginning

RN

 

Sales

Ending

Order?

Lost

 

received

inventory

 

 

 

 

inventory

 

sales

1

 

 

10

 

37

 

4

 

6

Y

 

2

 

 

6

 

60

 

5

 

1

 

 

3

12

 

13

 

79

 

6

 

7

Y

 

4

 

 

7

 

21

 

4

 

3

 

 

5

12

 

15

 

85

 

6

 

9

 

 

6

 

 

9

 

71

 

6

 

3

Y

 

7

 

 

3

 

48

 

4

 

0

 

1

8

12

 

12

 

39

 

4

 

8

 

 

9

 

 

8

 

31

 

4

 

4

Y

 

10

 

 

4

 

35

 

4

 

0

 

 

Over the 10 weeks only 1 gallon of sales is lost.

(Simulation and inventory analysis, moderate) {AACSB: Analytic Skills}

595

77.The lunch counte at a small restaurant has difficulty handling the lunch business. Currently, there is only one cashier in a single-channel, single-phase system. The restaurant has collected information on the interarrival time, and service time distributions from past lunch hours. They are represented in the tables below. Use the following two-digit random numbers given below to simulate 10 customers through the checkout system. What is the average time in line, and average time in system? (Set first arrival time to the interarrival time generated by first random number.)

Interarrival time

Probability

 

Service time

Probability

(minutes)

 

 

(minutes)

 

1

.20

 

1

.20

2

.20

 

2

.30

3

.30

 

3

.30

4

.20

 

4

.20

5

.10

 

 

 

Random numbers for interarrival times:

32, 73, 41, 38, 73, 01, 09, 64, 34, 55

 

 

 

 

Random numbers of service times:

84, 55, 25, 71, 34, 57, 50, 44, 95, 64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interarrival

 

Probability

 

 

RN

 

Service time

 

Probability

 

 

RN

time (minutes)

 

 

 

assignment

 

(minutes)

 

 

 

 

 

assignment

1

 

.20

 

01-20

 

1

 

 

.20

 

 

 

01-20

2

 

.20

 

21-40

 

2

 

 

.30

 

 

 

21-50

3

 

.30

 

41-70

 

3

 

 

.30

 

 

 

51-80

4

 

.20

 

71-90

 

4

 

 

.20

 

 

 

81-00

5

 

.10

 

91-00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Customer

RN

 

Interarrival

Arrival

 

Service

 

RN

Service

 

Service

 

Time

Time

number

 

 

time

 

time

 

begins

 

 

time

 

ends

 

in

in

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

line

System

1

32

 

2

2

 

2

 

84

4

 

 

6

 

0

4

2

73

 

4

6

 

6

 

55

3

 

 

9

 

0

3

3

41

 

3

9

 

9

 

25

2

 

 

11

 

0

2

4

38

 

2

11

 

11

 

71

3

 

 

14

 

0

3

5

73

 

4

15

 

15

 

34

2

 

 

17

 

0

2

6

01

 

1

16

 

17

 

57

3

 

 

20

 

1

4

7

09

 

1

17

 

20

 

50

2

 

 

22

 

3

5

8

64

 

3

20

 

22

 

44

2

 

 

24

 

2

4

9

34

 

2

22

 

24

 

95

4

 

 

28

 

2

6

10

44

 

3

25

 

28

 

64

3

 

 

31

 

3

6

Average time in line = 11/10 = 1.1 minutes; Average time in system = 39/10 = 3.9 minutes. (Simulation of a queuing problem, moderate) {AACSB: Analytic Skills}

596

78.Julie's Diamond Boutique is very concerned with its order policies related to one-carat diamond solitaires. Their current policy is to order 10 diamonds whenever their inventory reaches 6 diamonds. Currently there are 8 diamonds on hand. Orders are placed at the end of the month and take one month to arrive (e.g., if an order is placed at the end of month 1, it will be available at the beginning of month 3). The following distribution of monthly sales has been developed using historical sales. If Julie's does not have a diamond on hand, it will result in a lost sale. Use the following random numbers to determine the number of lost sales of one-carat solitaires at Julie's over 12 months.

Monthly sales

 

Probability

 

 

 

 

 

 

 

 

 

3

 

 

 

.20

 

 

 

 

 

 

 

 

 

4

 

 

 

.30

 

 

 

 

 

 

 

 

 

5

 

 

 

.20

 

 

 

 

 

 

 

 

 

6

 

 

 

.20

 

 

 

 

 

 

 

 

 

7

 

 

 

.10

 

 

 

 

 

 

 

 

 

Random numbers for sales: 10, 24, 03, 32, 23, 59, 95, 34, 34, 51, 08, 48

 

 

 

 

 

 

 

 

 

 

 

 

 

Monthly sales

 

Probability

 

RN

 

 

 

 

 

 

 

 

 

 

 

assignment

 

 

 

 

3

 

 

 

.20

 

 

01-20

 

 

 

 

 

4

 

 

 

.30

 

 

21-50

 

 

 

 

 

5

 

 

 

.20

 

 

51-70

 

 

 

 

 

6

 

 

 

.20

 

 

71-90

 

 

 

 

 

7

 

 

 

.10

 

 

91-00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Month

Order

Beginning

RN

 

Sales

Ending

Order?

Lost

 

received

inventory

 

 

 

 

inventory

 

sales

1

 

 

 

8

 

10

 

3

 

5

Y

 

2

 

 

 

5

 

24

 

4

 

1

 

 

3

10

 

 

11

 

03

 

3

 

8

 

 

4

 

 

 

8

 

32

 

4

 

4

Y

 

5

 

 

 

4

 

23

 

4

 

0

 

 

6

10

 

 

10

 

59

 

5

 

5

Y

 

7

 

 

 

5

 

95

 

7

 

0

 

2

8

10

 

 

10

 

34

 

4

 

6

Y

 

9

 

 

 

6

 

34

 

4

 

2

 

 

10

10

 

 

12

 

51

 

5

 

7

 

 

11

 

 

 

7

 

08

 

3

 

4

Y

 

12

 

 

 

4

 

48

 

4

 

0

 

 

Over the 12 months 2 sales are lost.

(Simulation and inventory analysis, moderate) {AACSB: Analytic Skills}

597

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]