Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

госы_1 / 47

.docx
Скачиваний:
101
Добавлен:
17.02.2016
Размер:
133.93 Кб
Скачать

Билет 47

1)Периодическая эксплуатация УЭЦН.

У стандартного способа эксплуатации УЭЦН в непрерывном режиме при всех плюсах есть один большой минус–невозможность эффективно изменять производительность установки без проведения ТРС. Применяемое для этой цели дросселирование снижает КПД УЭЦН, в результате чего повышаются затраты на потребление электроэнергии.В свою очередь, главный недостаток периодической эксплуатации УЭЦН состоит в снижении объемов добываемой продукции при переводе с непрерывной эксплуатации. Снижение связано с увеличением среднеинтегрального динамического уровня пластовой жидкости над приемом насоса, уменьшением депрессии на пласт и сокращением притока пластовой жидкости в скважину. ЦЭС представляет собой способ механизированной добычи нефти с помощью УЭЦН с регулируемым приводом на основе преобразователя частоты (ПЧ), при котором циклическую откачку жидкости из скважины чередуют с накоплением жидкости в скважине. В скважины с притоком флюида из пласта от 5 до30 м3/сут спускается УЭЦН производительностью ,превышающей приток (от 100 м3/сут и выше).Периоды откачки жидкости из скважины (максимум 10 минут) чередуются с периодами накопления жидкости(максимум 20 минут).Таким образом, ЦЭС представляет собой комбинацию периодической эксплуатации скважин УЭЦН и непрерывной эксплуатации скважин УЭЦН с регули- руемым приводом. При этом с технической точки зрения от известных способов эксплуатации скважин ЦЭС отличается прежде всего регулированием производительности добывающей установки путем изменения соотношения продолжительности откачки жид- кости из скважины и продолжительности накопления жидкости в скважине (и развиваемого ею давления) изменением скорости вращения насоса. Во-вторых, все элементы установки работают в кратковременном или циклическом кратковременном режиме, при котором времени работы недостаточно для достижения теплового равновесия с охлаждающей средой. НАРАБОТКА ОБОРУДОВАНИЯ ПРИ ЦЭС При неоднократных перезапусках УЭЦН НнО оборудования сокращается по причине увеличения частоты воздействия ударных пусковых перегрузок. Как следствие, увеличивается себестоимость добычи нефти. В рамках технологии ЦЭС ударные пусковые перегрузки устраняются за счет «мягкого» безударного пуска УЭЦН при помощи ПЧ. В ходе испытаний УЭЦН запускали более 20 тыс. раз за 600 суток, что не при- водило ни к каким негативным последствиям. В за счет малой величины коэффициента загрузки оборудования. Уменьшение скорости износа ЭЦН объясняется тем, что при ЦЭС, так же как и при периодической эксплуатации скважин, насос работает только часть календарного времени эксплуатации, а в остальное время бездействует и, следовательно, не изнашивается. Кратность увеличения НнО по износу насоса при ЦЭС равна отношению периода эксплуатации ко времени работы УЭЦН, т.е. величине, обратной коэффициенту загрузки оборудования. Смысл технологии циклического заводнения-увеличение упругого запаса пласт.системы(упругий запас—кол-во жидкости, которое которое можно добыть из пласта определенного размера при заданном перепаде давлений между нач. и текущим) за счет переодического повышения и снижения давления нагн.воды. В соответствии с теорией упругого режима перераспределение пластового давления происходит быстрее в высокопроницаемых пропластках и трещинах. В полуцикл повышения давления нагнетания вода из высокопроницаемых зон внедряется в низкопроницаемые области пласта. В полуцикл цикле снижения давления вода удерживается каппилярными силами в низкопроницаемых породах, а нефть из малопроницаемых пропластков перетекает в высокопроницаемые пропласткии трещины, поскольку в них происходит быстрее как повышение так и снижение давления. Перетоки нефти из низкопроницаемых пород в высокопроницаемые области пласта при циклическом воздействии способствует общему увеличению нефтеотдачи.

2)Схема работы гидравлического предохранительного клапана и устройство дыхательного клапана.

Гидравлический предохранительный клапан (рис. 1) пред­назначается для ограничения избыточного давления или вакуума в газовом пространстве при отказе дыхательного клапана, а также при недостаточном сечении его. Предохранительные клапаны рассчитаны на несколько большие давление и вакуум, чем дыха­тельный клапан: на избыточное давление 588 Н/м2 и разрежение 392 Н/м2. Гидравлический предохранительный клапан устанавли­вают в комплекте с огневым предохранителем. Предохранитель­ный клапан заливают незамерзающими неиспаряющимися мало­вязкими жидкостями (раствор глицерина, этиленгликоль и др.), образующими гидравлический затвор, через который выходит газ с воздухом или входит («вдох») воздух. На рис. 97, а показан момент, когда давление в газовом пространстве резервуара выше расчетного и газ сбрасывается в атмосферу через предохранитель­ный клапан. На рис. 97, б изображено положение, когда дыхательный клапан не сработал и образовавшийся в газовом пространстве резервуара вакуум стал настолько большим, что поступление воздуха в резервуар происходит через предохранительный клапан. На рис. 97, в показан случай, когда давление в газовом про­странстве резервуара и атмосферного воздуха одинаково.

Огневые предохранители устанавливают на резервуарах в ком­плекте с дыхательными и предохранительными клапанами и они предназначаются для предохранения газового пространства ре­зервуара от проникновения в него пламени через дыхательный или предохранительный клапан.

Дыхательные клапаны (рис. 2) рассчитаны на избыточное давление или вакуум в газовом пространстве резервуара 20 • 9,81 Па (20 мм вод. ст.). Дыхательный клапан работает следующим об­разом. При повышении давления внутри резервуара клапан 3 Поднимается, и лишний газ выходит в атмосферу, а при понижении давления внутри резервуара открывается клапан 1, и в резервуар поступает воздух. Клапан 1 и 3 могут быть отрегулированы на опрелделенное давление и подниматься только в том случае, когда давление или разряжение внутри резервуара достигнет определенной величины. Над клапанами имеются съемные люки, через которые вынимают клапаны для осмотра и ремонта.

Размер дыхательных клапанов выбирают в зависимости- от допускаемой пропускной способности их. Дыхательный клапан является ответственным элементом обо­рудования резервуара.

Рис. . Дыхательный клапан:

1 — корпус; 2 — клапан для подачи воздуха; 3 —клапан для вых

3)Исходные данные для гидродинамических моделей.

Методы ГДИС предназначены для изучения продуктивных пластов при их испытании, освоении и эксплуатации в добывающих и нагнетательных скважинах с целью получения данных об их продуктивности и приемистости, фильтрационных параметрах и скин‑факторе, трассировки границ пласта и особенностях зон дренирования, типа пласта коллектора, анизотропии пласта по проницаемости, режима залежи и др.

Методы ГДИС позволяют непосредственно определить гидропроводность и пьезопроводность пласта, продуктивность скважины, оценить качество вскрытия пласта и технологическую эффективность внедрения методов увеличения дебитов скважин. Кроме того, методами ГДИС можно определить тип коллектора, наличие границ неоднородности гидродинамической связи между скважинами и между пластами и т.д.

По технологии исследования различают:

  • методы ГДИС на установившихся режимах фильтрации;

  • методы ГДИС на неустановившихся режимах фильтрации;

К методам неустановившихся режимов фильтрации можно отнести и метод гидропрослушивания.

При этих исследованиях решается обратная задача теории фильтрации, т.е. при известных дебитах и забойных давлениях определяются параметры пласта.

Метод исследования на установившихся режимах фильтрации предназначен для определения коэффициента продуктивности скважины и характера фильтрации жидкости в пласте.

К методам исследования скважин на неустановившихся режимах фильтрации относятся:

  • снятие КВД и КПД в эксплуатационных и нагнетательных скважинах;

  • снятие КВУ в эксплуатационных скважинах механизированного фонда, снятие кривой стабилизации давления (КСД) «метод суммарной добычи»;

  • экспресс-методы, прослеживание изменения забойного давления (КПЗД).

В отечественных руководствах по ГДИС излагаются в основном методы обработки только на базе представления о плоскорадиальной фильтрации к вертикальным и наклонным скважинам. Это так называемые традиционные методы.

Массовое внедрение на промыслах гидравлического разрыва пласта и переход на бурение горизонтальных скважин и скважин с боковым стволом выдвинуло проблему дальнейшего развития и совершенствования комплекса ГДИС со сложными траекториями фильтрации.

Развитие теории и практики ГДИС в нашей стране и за рубежом шло параллельными путями. Несмотря на различие в способах анализа материалов исследований, базовые, теоретические представления, а также принципы интерпретации результатов исследований скважин у отечественных исследователей и их зарубежных коллег близки.

Современные методы ГДИС являются дальнейшим развитием и существенным дополнением широко известных традиционных ГДИС.

Методы ГДИС являются косвенными методами определения параметров пласта. Их теоретической и методологической основой служат решения прямых и обратных задач подземной гидромеханики, которые не всегда имеют однозначные решения. Поэтому интерпретация ГДИС носит комплексных характер с использованием результатов ГИС, лабораторных и геолого-промысловых исследований

Соседние файлы в папке госы_1